Sains
Malaysiana 47(2)(2018): 387-391
http://dx.doi.org/10.17576/jsm-2018-4702-21
Evaluation of La0.6Sr0.4Co0.2Fe0.8O3-δ as a Potential Cathode for Proton-Conducting Solid Oxide Fuel Cell
(Penilaian La0.6Sr0.4Co0.2Fe0.8O3-δ sebagai Potensi Katod untuk Sel Fuel Oksida Pepejal Pengkonduksi Proton)
Ismariza Ismail*,
Nafisah Osman & Abdul Mutalib Md Jani
Faculty of Applied
Science, Universiti Teknologi MARA, 02600 Arau, Perlis Indera Kayangan,
Malaysia
Diserahkan: 31 Ogos 2016/Diterima: 18 Januari 2017
ABSTRACT
The
application of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) as a potential cathode working on a BaCe0.54Zr0.36Y0.1O2.95 (BCZY) electrolyte for proton conducting solid oxide fuel cell was
investigated. LSCF nanoceramic powders were synthesized by an activated
carbon-assisted sol-gel process using metal nitrate-based chemicals. The LSCF
powder was transformed to a slurry and spin-coated onto both surfaces of BCZY
pellet to form a symmetrical cell with the configuration of LSCF|BCZY|LSCF. The
symmetrical cell was subsequently sintered at 950oC for 2 h to allow
a good contact formation between electrode/electrolyte layers. The phase
structural verification of the calcined powders was investigated by X-Ray
diffractometer (XRD). Field-emission scanning electron microscopy (FESEM) was
employed to examine the morphology of the sintered cell. The electrochemical
behaviour of the symmetrical cell was studied by an electrochemical impedance
spectroscopy. The formation of a single perovskite LSCF phase with a crystallite
size of 20 nm was obtained at 700oC as corroborated by XRD analysis.
The FESEM images showed a good contact between LSCF cathode and
BCZY electrolyte at electrode/electrolyte interfacial layer. The ASR obtained for LSCF symmetrical
cell measured at 700oC with and without Pt current collector is 0.87
and 31.25 Ωcm2, respectively.
Keywords:
Cathode material; morphology; proton-conducting solid oxide fuel cell
ABSTRAK
Kajian penggunaan La0.6Sr0.4Co0.2Fe0.8O3-δ
(LSCF) sebagai potensi katod ke atas elektrolit BaCe0.54Zr0.36Y0.1O2.95
(BCZY) untuk sel fuel oksida pepejal pengkonduksi proton
telah dijalankan dalam penyelidikan ini. Serbuk nano seramik LSCF disintesis melalui kaedah sol-gel
menggunakan bahan kimia berasaskan garam nitrat dibantu dengan
serbuk karbon teraktif sebagai agen penyerakan partikel. Serbuk
LSCF yang terhasil dijadikan sebagai dakwat katod dan disalutkan
di atas permukaan pelet elektrolit dengan menggunakan teknik
'spin-coat' untuk menghasilkan sel simetri dengan konfigurasi
LSCF|BCZY|LSCF. Sel simetri tersebut seterusnya disinter pada
suhu 950oC untuk menghasilkan sentuhan yang baik
di lapisan antaramuka elektrod/elektrolit.
Pengesahan struktur fasa serbuk yang dikalsinkan telah dikaji
dengan menggunakan difraktometer sinar-X (XRD). Mikroskop imbasan
elektron (FESEM) digunakan bagi mengkaji morfologi
sel simetri yang telah disinter. Kajian sifat elektrokimia sel
simetri dijalankan dengan menggunakan spektroskopi impedans.
Analisis XRD menunjukkan
bahawa pembentukan fasa perovskit tunggal LSCF dengan saiz kristalit
20 nm telah diperoleh pada suhu 700oC. Imej FESEM
mempamerkan sentuhan yang baik di antara lapisan katod LSCF
dengan elektrolit BCZY di bahagian antaramuka elektrod/elektrolit.
Rintangan luas permukaan yang didapati hasil pengukuran sel
simetri LSCF pada suhu 700oC dengan dan tanpa kehadiran
Pt sebagai pengumpul arus masing-masing adalah 0.87 dan 31.25 Ω cm2.
Kata kunci:
Bahan katod; morfologi; sel fuel oksida pepejal pengkonduksi proton
RUJUKAN
Abdullah, N.A., Hasan, S. & Osman, N. 2012. Role of CA-EDTA on the synthesizing process of cerate-zirconate ceramics electrolyte. Journal of Chemistry 2012: Article ID. 908340.
Baharuddin, N.A., Rahman, H.A., Muchtar, A.,
Sulong, A.B. & Abdullah,
H., 2014. Kesan masa pengendapan dan saiz elektrod lawan dalam penghasilan
katod komposit LSCF-SDC karbonat untuk SOFC. Sains Malaysiana 43(4):
595-601.
Baqué, L., Caneiro, A., Moreno, M.S. & Serquis, A. 2008. High performance
nanostructured IT- SOFC cathodes
prepared by novel chemical method. Electrochemistry Communications 10(12): 1905-1908.
Baumann, F.S., Fleig, J., Habermeier, H.U. & Maier, J. 2006. Impedance spectroscopic study
on well-defined (La,Sr)(Co,Fe)O3−δ model electrodes. Solid State
Ionics 177(11-12):
1071-1081.
Chanquía, C.M., Mogni, L., Troiani, H.E. & Caneiro, A. 2014. Highly active
La0.4Sr0.6Co0.8Fe0.2O3−δ nanocatalyst for oxygen reduction in
intermediate temperature-solid oxide fuel cells. Journal of Power Sources 270: 457-467.
Dailly, J., Fourcade, S., Largeteau, A., Mauvy, F., Grenier, J.C. & Marrony, M. 2010.
Perovskite and A2MO4-type oxides as new cathode materials
for protonic solid oxide fuel cells. Electrochimica Acta 55(20): 5847-5853.
Galasso, F.S. 1969. Structure, Properties and Preparation of Perovskite-Type Compounds. Oxford: Pergamon Press. p. 143.
Ismail, I., Osman, N. & Md Jani, A.M. 2016. Tailoring the microstructure of
La0.6Sr0.4Co0.2Fe0.8O3−α cathode material: The role of dispersing agent. Journal of Sol-Gel Science and
Technology 80(2):
259-266.
Jiang, S.P. 2002. A comparison of O2 reduction
reactions on porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O3 electrodes. Solid State
Ionics 146(1-2): 1-22.
Kim, J.H., Park, Y.M. & Kim, H.K. 2011. Nano-structured cathodes based on La0.6Sr0.4Co0.2Fe0.8O3−δ
for solid oxide fuel cells. Journal of Power Sources 196(7): 3544-3547.
Oda, H., Yoneda, T., Sakai, T., Okuyama, Y. & Matsumoto, H. 2014. Preparation of
nano-structured cathode for protonic ceramic fuel cell by bead-milling method. Solid
State Ionics 262: 388-391.
Ricote, S., Bonanos, N., Rørvik, P.M. & Haavik, C. 2012. Microstructure and performance
of La0.58Sr0.4Co0.2Fe0.8O3−δ cathodes deposited on
BaCe0.2Zr0.7Y0.1O3−δ by infiltration and spray pyrolysis. Journal
of Power Sources 209: 172-179.
Sun, W., Zhiwen, Z., Yinzhu, J., Zhen, S.,
Litao, Y. & Wei, L.
2011. Optimization of BaZr0.1Ce0.7Y0.2O3−δ-based proton-conducting
solid oxide fuel cells with a cobalt-free proton-blocking
La0.7Sr0.3FeO3−δ–Ce0.8Sm0.2O2−δ composite cathode. International Journal of
Hydrogen Energy 36(16): 9956-9966.
Yang, Z., Ding, Z., Xiao, J., Zhang, H., Ma, G. & Zhou, Z. 2012. A novel cobalt-free layered
perovskite-type GdBaFeNiO5+δ cathode material for proton-conducting
intermediate temperature solid oxide fuel cells. Journal of Power Sources 220: 15-19.
Zhou, W., Shao, Z. & Jin, W. 2006. Synthesis of nanocrystalline conducting composite oxides
based on a non-ion selective combined complexing process for functional
applications. Journal of Alloys and Compounds 426(1-2): 368-374.
*Pengarang untuk
surat-menyurat; email: ismariza85@gmail.com