Sains Malaysiana 47(2)(2018): 419-426
http://dx.doi.org/10.17576/jsm-2018-4702-25
Load Forecasting using Combination Model
of Multiple Linear Regression with Neural Network for Malaysian City
(Peramalan
Beban Menggunakan Model Gabungan
bagi Regresi
Linear Berganda dengan Rangkaian Neuron untuk Bandaraya di Malaysia)
Nur Arina Bazilah Kamisan1,
Muhammad Hisyam Lee1*, Suhartono Suhartono2, Abdul Ghapor
Hussin3 & Yong Zulina Zubairi4
1Fakulti Sains, Universiti
Teknologi Malaysia, 81310 Johor Bahru, Johor Darul Takzim, Malaysia
2Jalan
Raya ITS, Keputih, Sukolilo, Kota SBY, Jawa Timur 60111, Indonesia
3Universiti
Pertahanan Nasional Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur, Malaysia
4Universiti
Malaya, Jalan Universiti, 50603 Kuala Lumpur, Wilayah Persekutuan,
Malaysia
Diserahkan:
1 Mei 2016/Diterima: 16 Ogos 2017
Abstract
Forecasting
a multiple seasonal data is differ from a usual
seasonal data since it contains more than one cycle in a data. Multiple linear
regression (MLR) models have been used widely in load forecasting because of
its usefulness in the forecast a linear relationship with other factors but MLR
has a disadvantage of having difficulties in modelling a nonlinear relationship
between the variables and influencing factors. Neural network (NN) model, on
the other hand, is a good model for modelling a nonlinear data. Therefore, in
this study, a combination of MLR and NN models has proposed this combination to
overcome the problem. This hybrid model is then compared with MLR and NN models
to see the performance of the hybrid model. RMSE is used as a performance
indicator and a proposed graphical error plot is introduce to see the error
graphically. From the result obtained this model gives a better forecast compare
to the other two models.
Keywords: Error plot; hybrid model; neural
network; regression model; residuals
Abstrak
Peramalan berganda data bermusim adalah berbeza daripada peramalan data bermusim biasa kerana ia
mengandungi lebih
daripada satu kitaran
dalam satu
data. Model berganda regresi linear (MLR)
telah digunakan secara meluas dalam
ramalan beban
kerana kegunaannya dalam meramalkan hubungan linear dengan faktor lain tetapi MLR mempunyai kelemahan iaitu mempunyai kesukaran dalam memodelkan hubungan linear antara pemboleh ubah dan faktor
yang mempengaruhi. Model rangkaian
neural (NN) di sisi lain, adalah model yang
baik dalam pemodelan
data linear. Oleh itu, dalam
kajian ini gabungan
MLR dan NN model dicadangkan
gabungan ini
untuk mengatasi masalah tersebut. Model hibrid ini
kemudiannya dibandingkan
dengan MLR dan NN model untuk melihat prestasi
model hibrid. RMSE digunakan
sebagai penunjuk
prestasi dan plot ralat grafik diperkenalkan
untuk melihat
ralat secara grafik.
Daripada keputusan
yang diperoleh model ini memberikan ramalan yang lebih baik berbanding
dengan dua
model yang lain.
Kata kunci: Model hibrid; model regresi; plot ralat; rangkaian neural; sisa
RUJUKAN
Basheer Shukur, O., Salem Fadhil,
N., Hisyam Lee, M. & Hura Ahmad, M. 2014. Electricity load forecasting
using hybrid of multiplicative double seasonal exponential smoothing model with
artificial neural network. Jurnal
Teknologi (Sciences and Engineering). 69(2): 65-70.
Bates, J.M. & Granger, C.W.J.
1969. The combination of forecasts. J.
Oper. Res. Soc. 20(4): 451-468.
Bowerman, B.L., O'Connell, R.T.
& Koehler, A.B. 2005. Forecasting,
Time Series, and Regression: An Applied Approach. 4th ed. Pacific Grove:
Thomson Brooks/Cole.
Chakhchoukh, Y., Panciatici, P.
& Mili, L. 2011. Electric load forecasting based on statistical robust
methods. IEEE Transactions on Power
Systems 26(3): 982-991.
Chatfield, C. 2005. Time-series forecasting. Significance 2(3): 131-133.
Chatfield, C. 2000. Time-Series
Forecasting. Boca Raton: Chapman & Hall/CRC.
Chatfield, C.
1978. The Holt-Winters forecasting procedure. Journal of the Royal Statistical Society. Series C (Applied Statistics) 27(3): 264-279.
Dudek, G. 2016. Pattern-based local
linear regression models for short-term load forecasting. Electric Power Systems Research 130: 139-147.
Gould, P.G., Koehler, A.B., Ord,
J.K., Snyder, R.D., Hyndman, R.J. & Vahid-Araghi, F. 2008. Forecasting time
series with multiple seasonal patterns. European
Journal of Operational Research 191(1): 207-222.
Hahn, H.,
Meyer-Nieberg, S. & Pickl, S. 2009. Electric load forecasting methods:
Tools for decision making. European
Journal of Operational Research 199(3): 902-907.
Hyndman, R.J.
& Koehler, A.B. 2006. Another look at measures of forecast accuracy. International journal of forecasting. 22(4):
679-688.
Ismail, Z., Jamaluddin, F. &
Jamaludin, F. 2008. Time series regression model for forecasting malaysian
electricity load demand. Asian Journal of
Mathematics & Statistics 1:
139-149.
Jang, J.S.R. 1993. ANFIS:
adaptive-network-based fuzzy inference system. IEEE Transactions on. Systems, Man and Cybernetics 23(3): 665-685.
Kyriakides, E. & Polycarpou, M.
2007. Short term electric load forecasting: A tutorial. In Trends in Neural Computation, edited by Chen, K. & Wang, L.
Berlin Heidelberg: Springer. 35:
391-418.
Masters, T. 1993. 19 - Evaluating
performance of neural networks. In Practical
Neural Network Recipies in C++. edited by Masters, T. San Francisco: Morgan
Kaufmann. pp. 343-360.
Mastorocostas, P.A., Theocharis,
J.B., Kiartzis, S.J. & Bakirtzis, A.G. 2000. A hybrid fuzzy modeling method
for short-term load forecasting. Mathematics
and Computers in Simulation 51(3-4): 221-232.
Mohamed, N. & Ahmad, M.H. 2010.
Forecasting Malaysia load using a hybrid model. Paper presented at the STATISTIKA:
Forum Teori dan Aplikasi Statistika.
Mohamed, N., Ahmad, M.H. & Ismail, Z. 2011. Improving
short term load forecasting using double seasonal arima model. World Applied Sciences Journal 15(2):
223-231.
Mohamed, N.,
Ahmad, M.H. & Ismail, Z. 2010. Double seasonal ARIMA model for forecasting
load demand. Matematika 26: 217-231.
Park, Y.R., Murray, T.J. &
Chen, C. 1996. Predicting sun spots using a layered perceptron neural network. IEEE Trans Neural Netw. 7(2): 501-505.
Ringwood, J.V., Bofelli, D. &
Murray, F.T. 2001. Forecasting electricity demand on short, medium and long
time scales using neural networks. Journal
of Intelligent & Robotic Systems 31(1): 129-147.
Soares, L.J.
& Medeiros, M.C. 2008. Modeling and forecasting short-term electricity
load: A comparison of methods with an application to Brazilian data. International Journal of Forecasting 24(4):
630-644.
Tang, Z. & Fishwick, P.A. 1993.
Feedforward neural nets as models for time series forecasting. ORSA Journal on Computing 5(4):
374-385.
Taylor, J.W. 2003. Short-term
electricity demand forecasting using double seasonal exponential smoothing. The Journal of the Operational Research
Society 54(8): 799-805.
Xiaojuan, L., Enjian, B., Jian'an,
F. & Lunhan, L. 2010. Time-variant slide fuzzy time-series method for
short-term load forecasting. Paper presented at the 2010 IEEE International Conference on Intelligent Computing and Intelligent
Systems (ICIS).
Ying, L.C. & Pan, M.C. 2008.
Using adaptive network based fuzzy inference system to forecast regional
electricity loads. Energy Conversion and
Management 49(2): 205-211.
Zhang, G.P. 2003. Time series
forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50: 159-175.
Zhang, G.P.
& Qi, M. 2005. Neural network forecasting for seasonal and trend time
series. European Journal of Operational
Research 160(2): 501-514.
Zhang, Y., Zhou, Q., Sun, C., Lei, S., Liu, Y. & Song, Y.
2008. RBF neural network and ANFIS-based short-term load forecasting approach
in real-time price environment. IEEE
Transactions on Power Systems 23(3): 853-858.
*Pengarang untuk surat-menyurat; email: mhl@utm.my