Sains Malaysiana 47(5)(2018): 1025–1031
http://dx.doi.org/10.17576/jsm-2018-4705-19
Preparation and
Characterization of Macroporous Bioactive Glass Ceramic Made via Sol-Gel Route
and Powder Sintering Method
(Penyediaan dan Pencirian
Seramik Kaca Bioaktif Bermakroliang Dibuat Melalui Laluan Sol-Gel
dan Kaedah Sinteran Serbuk)
SYED NUZUL FADZLI SYED ADAM1*, ROSLINDA SHAMSUDIN1, SITI ROHANI ZAINUDDIN2, BANJURAIZAH JOHAR2 & FIRUZ ZAINUDDIN2
1School of Applied
Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
2School of Materials
Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis Indera Kayangan, Malaysia
Diserahkan: 15
September 2017/Diterima: 20 November 2017
ABSTRACT
The purpose of this
study was to prepare macroporous glass ceramic scaffold by sol-gel glass
synthesis and powder sintering method. Sodium nitrate was added during sol-gel
process to obtain glass ceramic with mol composition of 42.11% SiO2 -
18.42% CaO - 29.82% Na2O - 9.65% P2O5.
The glass particles were found to be thermally stable above 900°C as indicated
by TGA/DTA analysis. The dried glass particles obtained from
sol-gel process were compacted and sintered at 1000°C for 3 h soaking time.
Sintering crystallized the glass by 71.5% of crystallinity with tetracalcium
catena-hexaphosphate (V) (Ca4(P6O19)
as the main crystalline phase as revealed by XRD analysis.
Although glass crystallized during sintering, it showed a good in vitro bioactivity as apatite-like layer were deposited on
the glass ceramic surface when immersed in simulated body fluid (SBF)
for 14 days. SEM analysis proved the macroporous structure formation
with pore size ranges between 30 and 350 μm due to foaming effect which
occurred during sintering. Besides that, the glass ceramic surface formed into
vitrified-like due to fluxing effect during sintering thus affected the
porosity and densification measurement done by Archimedes test. In conclusion,
the presence of sodium oxide in sol-gel glass ceramic composition by 29.82 mol
% with sintering temperature at 1000°C is able to produce bioactive and macroporous
glass ceramic that potentially be used as medical scaffold material.
Keywords: Glass
ceramic; macroporous; powder sintering; scaffold; sol-gel
ABSTRAK
Tujuan kajian ini dijalankan
adalah untuk menyediakan perancah seramik kaca berkeliangan makro
melalui kaedah sintesis sol-gel dan sinteran serbuk. Natrium nitrat
telah ditambahkan semasa proses sol-gel untuk menghasilkan seramik
kaca dengan komposisi mol iaitu 42.11% SiO2 - 18.42%
CaO - 29.82% Na2O - 9.65% P2O5.
Partikel kaca didapati stabil secara terma pada suhu melebihi
900ºC seperti yang ditunjukkan oleh analisis TGA/DTA. Partikel kaca kering
yang diperoleh daripada proses sol-gel dipadatkan dan disinter
pada suhu 1000ºC selama 3 jam. Sinteran menghablurkan kaca
sebanyak 71.5% kehabluran dengan tetrakalsium katena-heksafosfat
(V) (Ca4(P6O19)
sebagai fasa berhablur utama seperti yang ditunjukkan oleh analisis
XRD.
Walaupun kaca menghablur semasa sinteran, sampel masih menunjukkan
kebioaktifan in vitro yang baik disebabkan lapisan seakan apatit termendap
di atas permukaan seramik kaca selepas direndam dalam larutan
bendalir badan simulasi (SBF) selama 14 hari. Analisis SEM membuktikan
pembentukan struktur bermakroliang dengan julat saiz liang antara 30 ke 350 μm disebabkan oleh
kesan pembusaan yang berlaku semasa sinteran. Selain itu, permukaan
seramik kaca membentuk seakan kekaca disebabkan oleh kesan fluks
semasa sinteran sekaligus menjejaskan pengukuran keliangan dan
pemadatan melalui ujian Archimedes. Kesimpulannya, kehadiran komponen
natrium oksida dalam komposisi seramik kaca sol-gel sebanyak 29.82%
mol dengan suhu sinteran pada 1000°C dapat menghasilkan seramik
kaca bioaktif dan bermakroliang yang berpotensi untuk digunakan sebagai bahan perancah perubatan.
Kata kunci: Bermakroliang; perancah; seramik kaca; sinteran serbuk; sol-gel
RUJUKAN
Araújo, M., Miola, M., Baldi, G., Perez, J. & Verné, E. 2016.
Bioactive glasses with low Ca/P ratio and enhanced bioactivity. Materials 226(9):
1-15.
Bellucci, D., Cannillo, V. & Sola, A. 2010. An overview of the
effects of thermal processing on bioactive glasses. Science of Sintering 42(3):
307-320.
Bizari, D., Rabiee, M., Moztarzadeh, F., Tahriri, M., Alavi, S.H.
& Masaeli, R. 2013. Synthesis, characterization and biological evaluation
of sol-gel derived nanomaterial in the ternary system 64% SiO2-31%
CaO-5% P2O5 as a
bioactive glass: In vitro study. Ceramics - Silikaty 57 (3):
201-209.
Brink, M., Turunen, T., Happonen, R.P. & Yli-Urpo, A. 1997.
Compositional dependence of bioactivity of glasses in the system Na2O-K2O-MgO-CaO-B2O3-P2O5-SiO2. Journal of Biomedical Materials Research 37(1): 114-121.
Chen, Q.Z., Li, Y., Jin, L.Y., Quinn, J.M.W. & Komesaroff,
P.A. 2010. A new sol - gel process for producing Na2O-containing
bioactive glass ceramics. Acta Biomaterialia 6: 4143-4153.
Chen, Q.Z. & Boccaccini, A.R. 2006. Coupling mechanical
competence and bioresorbability in bioglass ® -derived tissue engineering
scaffolds. Advanced Engineering Materials 8(4): 285-289.
Chen, Q.Z., Thompson, I.D. & Boccaccini, A.R. 2006. 45S5
Bioglass-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials 27(11): 2414-2425.
Delben, J.R.J., Pereira, K., Oliveira, S.L., Alencar, L.D.S.,
Hernandes, A.C. & Delben, A.A.S.T. 2013. Bioactive glass prepared by
sol-gel emulsion. Journal of Non-Crystalline Solids 361: 119-123.
Duée, C., Désanglois, F., Lebecq, I., Moreau, G., Leriche, A.
& Follet-Houttemane, C. 2007. Mixture designs applied to glass bioactivity
evaluation in the Si-Ca-Na system. Journal of Non Crystalline Solids 355(16-17):
943-950.
Esfehani, F., Baghshaei, S. & Ghader, A.A.B. 2013. The effects
of CaO/P2O5 molar
ratio changes on in vitro bioactivity of nanopowder glass via sol-gel in
SiO2-CaO-P2O5 system. Basic and Applied Scientific Research 3(1s): 375-382.
Guarino, V., Causa, F. & Ambrosio, L. 2007. Bioactive
scaffolds for bone and ligament tissue. Expert Review of Medical Devices 4(3):
405-418.
Izadi, S., Hesaraki, S. & Ardakani, M.H. 2014. Evaluation
nanostructure properties of bioactive glass scaffolds for bone tissue
engineering. Advanced Materials Research 829: 289-293.
Izquierdo, B., Isabel, A. & Salinas, J. 1999. In vitro calcium
phosphate layer formation on sol-gel glasses of the system CaO-SiO2. Biomedical Materials Research 4636: 243-250.
Jones, J.R., Lin, S., Yue, S., Lee, P.D., Hanna, J.V. &
Newport, R.J. 2010. Bioactive glass scaffolds for bone regeneration and their
hierarchical characterisation. Engineering in Medicine 224: 1373-1387.
Jones, J.R. 2009. New trends in bioactive scaffolds: The
importance of nanostructure. Journal of the European Ceramic Society 29:
1275-1281.
Jones, J.R., Ehrenfried, L.M. & Hench, L.L. 2006. Optimising
bioactive glass scaffolds for bone tissue engineering. Biomaterials 27:
964-973.
Kamalian, R., Yazdanpanah, A., Moztarzadeh, F., Ravarian, R.,
Moztarzadeh, Z., Tahmasbi, M. & Mozafari, M. 2012. Synthesis and
characterization of bioactive glass/forsterite nanocomposites for bone and
dental implants. Ceramics - Silikaty 56(4): 331-340.
Karageorgiou, V. &
Kaplan, D. 2005. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26: 5474-5491.
Liu, J. & Miao, X.
2004. Sol-gel derived bioglass as a coating material for porous alumina
scaffolds. Ceramics International 30: 1781-1785.
Liu, X., Rahaman, M.N.
& Fu, Q. 2013a. Bone regeneration in strong porous bioactive glass
scaffolds with an oriented microstructure implanted in rat calvarial defects. Acta
Biomaterialia 9(1): 4889-4898.
Liu, X., Rahaman,
M.N., Hilmas, G.E. & Bala, B.S. 2013b. Mechanical properties of bioactive
glass scaffolds fabricated by robotic deposition for structural bone repair. Acta
Biomaterialia 9(6): 7025-7034.
Mami, M., Lucas-Girot,
A., Oudadesse, H. & Dorbez-Sridi, R. 2008. Investigation of the surface
reactivity of a sol-gel derived glass in the ternary system SiO2–CaO–P2O5. Applied Surface Science 254: 7386-7393.
Mehdikhani, B. &
Borhani, G.H. 2013. Crystallization behavior and microstructure of bio
glass-ceramic system. International Letters of Chemistry 14: 58-68.
Mozafari, M.,
Moztarzadeh, F. & Tahriri, M. 2010. Investigation of the physico-chemical
reactivity of a mesoporous bioactive SiO2–CaO–P2O5 glass in simulated body fluid. Non Crystalline Solids 356(28):
1470-1478.
Mukundan, L.M.,
Nirmal, R., Vaikkath, D. & Nair, P.D. 2013. A new synthesis route to high
surface area sol gel bioactive glass through alcohol washing. A preliminary
study. Biomatter 3: 1-10.
Nandi, S.K., Kundu, B.
& Datta, S. 2011. Development and applications of varieties of bioactive
glass compositions in dental surgery, third generation tissue engineering,
orthopaedic surgery and as drug delivery system. In Biomaterials
Applications for Nanomedicine, edited by Pignatello, R. Croatia: Intech.
Chapter 4. pp. 69-116.
Rezwan, K., Chen,
Q.Z., Blaker, J.J. & Roberto, A. 2006. Biodegradable and bioactive porous
polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27: 3413-3431.
Saboori, A., Rabiee,
M., Moztarzadeh, F., Sheikhi, M., Tahriri, M. & Karimi, M. 2009. Synthesis,
characterization and in vitro bioactivity of sol-gel-derived SiO2-CaO-P2O5-MgO
bioglass. Materials Science and Engineering C 29(1): 335-340.
Sabree, I., Gough,
J.E. & Derby, B. 2015. Mechanical properties of porous ceramic scaffolds:
Influence of internal dimensions. Ceramics International 41: 8425-8432.
Saravanapavan, P.
& Hench, L.L. 2003. Mesoporous calcium silicate glasses. I. Synthesis. Journal
of Non-Crystalline Solids 318: 1-13.
Saravanapavan, P.,
Jones, J.R., Pryce, R.S. & Hench, L.L. 2003. Bioactivity of gel–glass
powders in the CaO-SiO2 system: A comparison with ternary (CaO-P2O5-SiO2)
and quaternary glasses (SiO2-CaO-P2O5-Na2O). Journal of Biomedical Materials Research Part A 66(1): 110-119.
Shu, C., Wenjuan, Z.,
Xu, G., Wei, Z., Wei, J. & Dongmei, W. 2010. Dissolution behavior and
bioactivity study of glass ceramic scaffolds in the system of CaO–P2O5–Na2O–ZnO
prepared by sol-gel technique. Materials Science and Engineering C 30:
105-111.
Siqueira, R.L., Peitl,
O. & Zanotto, E.D. 2011. Gel-derived SiO2–CaO–Na2O–P2O5 bioactive powders: Synthesis and in vitro bioactivity. Materials
Science and Engineering C 31: 983-991.
Stábile, F.M.,
Martinez Stagnaro, S.Y., Ortiga, J. & Volzone, C. 2015. Production of
porous scaffolds from bioglass 45S5- derived glasses. Procedia Materials
Science 9: 558-562.
Wachi, S. & Jones,
A.G. 1992. Dynamic modelling of particle size distribution and degree of
agglomeration during precipitation. Chemical Engineering Science 47(12):
3145-3148.
Wu, Z.Y., Hill, R.G.
& Jones, J.R. 2011. Optimizing the processing of porous melt-derived
bioactive glass scaffolds. Bioceramics Development and Applications 1:
2-5.
*Pengarang
untuk surat-menyurat; email: syed.nuzul@unimap.edu.my