Sains Malaysiana 47(7)(2018): 1359–1367
http://dx.doi.org/10.17576/jsm-2018-4707-02
The Optimization of RBD
Palm Oil Epoxidation Process using D-Optimal Design
(Pengoptimuman Proses Pengepoksidaan Minyak Sawit RBD menggunakan Reka Bentuk
D-Optimum)
NURAZIRA MOHD NOR, DARFIZZI DERAWI
& JUMAT SALIMON*
School of
Chemical Science and Food Technology, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 5 Ogos 2017/Diterima: 25 Februari
2018
ABSTRACT
The epoxidation process of RBD palm
oil was carried out using in situ generated performic acid. The effect
of various process variables such as the formic acid towards hydrogen peroxide
mole ratio, the reaction temperature and the reaction time were optimized by
using response surface methodology (RSM). The D-optimal design was
used to evaluate the influence of process variables and their interaction in
order to obtain the process optimum conditions. The results showed that the
optimum conditions of the epoxidation process were at 5.91 mole ratio of formic
acid towards 3.60 mole of hydrogen peroxide, reaction temperature of 40ºC and
reaction time of 2.55 h. At the optimum condition, the epoxidised RBD palm
oil (EPO) yield was 86% with oxirane oxygen content (OOC)
of 3.46%. The results showed in good agreement with the predicted values from
the RSM model.
Keywords: D-optimal design; epoxidation;
epoxidised RBD palm oil; optimization
ABSTRAK
Proses pengepoksidaan minyak sawit
RBD
telah dijalankan menggunakan asid performik terjana
secara in-situ.
Kesan pelbagai proses pemboleh ubah seperti nisbah mol asid formik
terhadap hidrogen peroksida, suhu tindak balas dan masa tindak balas
telah dioptimumkan dengan menggunakan kaedah permukaan respons (RSM).
Reka bentuk D-optimum telah digunakan untuk menilai pengaruh dan
interaksi pelbagai pemboleh ubah proses untuk mendapatkan keadaan
proses yang optimum. Keputusan kajian menunjukkan bahawa keadaan
optimum proses pengepoksidaan diperoleh pada nisbah 5.91 mol asid
formik terhadap 3.60 mol hidrogen peroksida, suhu tindak balas pada
40ºC dan masa tindak balas selama 2.55 jam. Pada keadaan
optimum, hasil minyak sawit terepoksida (EPO)
adalah sebanyak 86% dengan nilai kandungan oksigen oksiran (OOC)
sebanyak 3.46%. Keputusan kajian menunjukkan keputusan yang menyamai
nilai-nilai yang diramalkan daripada model RSM.
Kata
kunci: Minyak sawit RBD; pengepoksidaan; pengoptimuman;
reka bentuk D-optimum
RUJUKAN
Adhvaryu, A., Liu, Z.
& Erhan, S.Z. 2005. Synthesis of novel alkoxylated triacylglycerols and
their lubricant base oil properties. Ind. Crops Prod. 21: 113-119.
Aziz, N.A.M., Yunus, R.,
Rashid, U. & Syam, A.M. 2014. Application of response surface methodology
(RSM) for optimizing the palm-based pentaerythritol ester synthesis. Industrial
Crops and Products 62: 305-312.
Borugadda, V.B. &
Goud, V.V. 2015. Response surface methodology for optimization of bio lubricant
basestock synthesis from high free fatty acids castor oil. Energy Science
& Engineering 3(4): 371-383.
Borugadda, V.B. &
Goud, V.V. 2014. Synthesis of waste cooking oil epoxide as a bio- lubricant
base stock: Characterization and optimization study. J. Bioproc. Eng.
Bioref. 3: 57-72.
Borugadda, V.B. &
Goud, V.V. 2013. Comparative studies of thermal, oxidative and low temperature
properties of waste cooking oil and castor oil. J. Renew. Sustain. Energy 5:
063104.
Derawi, D. & Salimon,
J. 2016. Sintesis sebatian hidroksi-eter minyak sawit olein. Sains
Malaysiana 45(5): 817-823.
Derawi, D., Salimon, J.
& Ahmed, W.A. 2014. Preparation of epoxidized palm olein as
renewable material by using peroxy acids. The Malaysian Journal
of Analytical Sciences 18(3): 584-591.
Dinda, S., Patwardhan,
A.V., Goud, V.V. & Pradhan, N.C. 2008. Epoxidation of cottonseed oil by
aqueous hydrogen peroxide catalysed by liquid inorganic acids. Bioresour.
Technol. 99: 3737-3744.
El-Adly, R.A., Shoaib,
A.M., Enas, A.I. & Modather, F. 2014. Optimum operating conditions for
epoxidation reaction of Jojoba and castor oils. Int. Journal of Engineering
Research and Applications 4(3): 816-822.
Erhan, S.Z., Sharma,
B.K. & Perez, J.M. 2006. Oxidation and low temperature stability of
vegetable oil-based lubricants. Ind. Crops Prod. 24: 292-299.
Goud, V.V., Patwardhan,
A.V., Dinda, S. & Pradhan, N.C. 2007. Kinetics of epoxidation of Jatropha oil with peroxyacetic and peroxyformic acid catalysed by acidic ion
exchange resin. Chemical Engineering Science 62: 4065-4076.
Goud, V.V., Patwardhan,
A.V. & Pradhan, N.C. 2006. Studies on the epoxidation of mahua oil (Madhumica
indica) by hydrogen peroxide. Bioresource Technology 97: 1365-1371.
Gunstone, F.D. 2004. The
Chemistry of Oils and Fats: Sources, Composition Properties and Uses. London:
Blackwell Publishing Ltd.
Hoang, T.T.K. & Kim,
II. 2015. Epoxidation and ring-opening of palm oil to produce high
functionality polyols. Australia Journal of Basic and Applied Sciences 9(8):
89-93.
Joseph, R., Madhusoodhanan,
K.N., Alex, R., Varghese, S., George, K.E. & Kuriakose, B. 2014.
Studies on epoxidised rubber seed oil as secondary plasticiser/stabiliser
for polyvinyl chloride. Plastics Rubber and Composites
33(5): 217-222.
Kotwal, M., Kumar, A. &
Darbha, S. 2013. Three- dimensional, mesoporous titanosilicates
as catalysts for producing biodiesel and biolubricants. J. Mol.
Catal. A. Chem. 377: 65-73.
Lathi, P.S. & Mattiasson,
B. 2007. Green approach for the preparation of biodegradable lubricant base
stock from epoxidised vegetable oil. Applied Catalysis B: Environmental 69:
207-212.
Manivannan, P. &
Rajasimman, M. 2011.Optimization of process parameters for the osmotic
dehydration of beetroot in sugar solution. J. Food Process Eng. 34:
804-825.
Milchert, E. &
Smagowicz, A. 2009. The influence of reaction parameters on the epoxidation of
rapeseed oil with peracetic acid. J. Am. Oil Chem. Soc. 86: 1227-1233.
Moser, B.R. & Erhan,
S.Z. 2007. Preparation and evaluation of a series of α-hydroxy ethers from
9, 10-Epoxystreates. Eur. J. Lipid Sci. Technol. 109: 206-213.
Mungroo, R., Pradhan,
N.C., Goud, V.V. & Dalai, A.K. 2008. Epoxidation of canola oil with
hydrogen peroxide catalyzed by acidic ion exchange resin. J. Am. Oil Chem.
Soc. 85: 887-896.
Nirmal, V.P. &
Dineshbabu, D. 2015. Performance and emission of Pongamia pinnata oil as
a lubricant in diesel engine. International Journal of Innovative Research
in Science, Engineering and Technology 4(2): 435-441.
Njoku, P.C., Egbukole,
M.O. & Enenebeaku, C.K. 2010. Physio-chemical characteristics and dietary
metal levels of oil from Elaeis guineensis species. Pakistan Journal
of Nutrition 9(2): 137-140.
Rafiee-Moghaddam, R.,
Salimon, J., Jelas-Haron, M.D., Jahangirian, H., Shah Ismail, M.H., Hosseini,
S. & Rezayi, M. 2014. Lipase epoxidation optimizing of Jatropha curcas oil
using perlauric acid. Digest Journal of Nanomaterials and Biostructures 9(3):
1159-1169.
Razali, N., Mootabadi,
H., Salamatinia, B., Lee, K.T. & Abdullah, A.Z. 2010. Optimization
of process parameters for alkaline-catalysed transesterification
of palm oil using response surface methodology. Sains Malaysiana
39(5): 805-809.
Salimon, J., Abdullah,
B.M. & Salih, N. 2016. Optimization of the oxirane ring opening reaction in
biolubricant base oil production. Arabian Journal of Chemistry 9:
1053-1058.
Salimon, J., Ahmed, W.A.,
Salih, N., Yarmo, M.A. & Derawi, D. 2015. Lubricity and tribological
properties of dicarboxylic acids and oleyl alcohol based esters.
Sains Malaysiana 44(3): 405-412.
Salimon, J., Salih, N.
& Yousif, E. 2011. Chemically modified biolubricant basestocks
from epoxidized oleic acid: Improved low temperature properties
and oxidative stability. Journal of Saudi Chemical Society 15:
195-201.
Salimon, J., Dina Azleema,
M.N., Nazriwati, A.T., Mohd Firdaus, M.Y. & Noraisah, A. 2010.
Fatty acid composition and physicochemical properties of Malaysian
castor bean Ricinus communis L. seed oil. Sains Malaysiana
39(5): 761-764.
Salimon, J. & Salih,
N. 2009. Substituted esters of octadecanoic acid as potential biolubricants.
European Journal of Scientific Research 31(2): 273-279.
Saremi, K., Tabarsa, T.,
Shakeri, A. & Babanalbandi, A. 2012. Epoxidation of soybean
oil. Annals of Biological Research 3(9): 4254-4258.
Sharma, B.K., Perez,
J.M. & Erhan, S.Z. 2007. Soybean oil-based lubricants: A search for
synergistic antioxidants. Energy Fuels 21: 2408-2414.
Singh, C.P. &
Chhibber, V.K. 2013. Chemical modification in karanja oil for biolubricant
industrial applications. J. Drug Deliv. Therapeutics 3: 117-122.
Suarez, P.A.Z., Perreira, M.S.C., Doll,
K.M., Sharma, B.K. & Erhan, S.Z. 2009. Epoxidation of ethyl oleate using
heterogeneous catalyst. Ind. Eng. Chem. Res. 48: 3268-3270.
Tabrizi, S.A.H. & Nassaj, E.T. 2011.
Modeling and optimization of densification of nanocrystalline Al2O3 powder
prepared by a sol–gel method using response surface methodology. J.
Sol-Gel. Sci. Technol. 57: 212-220.
Wu, X., Zhang, X., Yang, S., Chen, H.
& Wang, D. 2000. The study of epoxidized rapeseed oil used as a potential
biodegradable lubricant. JAOCS 77: 561-563.
*Pengarang untuk surat-menyurat;
email: jumat@ukm.edu.my
|