Sains Malaysiana 47(8)(2018): 1693–1700
http://dx.doi.org/10.17576/jsm-2018-4708-08
Responses of Four Citrus Plants to Phytophthora-Induced
Root Rot
(Tindak Balas Empat Tumbuhan Sitrus kepada Reput
Akar Diinduksi dengan Phytophthora)
LI TIAN1, QIANG-SHENG WU1*, KAMIL KUČA2 & MOHAMMED MAHABUBUR RAHMAN3
1College of Horticulture
and Gardening, Yangtze University, Jingzhou, Hubei 434025, China
2Department of Chemistry,
Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003m Czech
Republic
3Brix' N Berries, Leduc,
Alberta, Canada
Diserahkan: 2 Mac 2018/Diterima:
4 April 2018
ABSTRACT
China is one of the largest citrus
producers in Asia, where Phytophthora parasitica infection
has become the major threat in sustaining long term citrus production.
The proposed study examined the effects of P. parasitica on
Citrus junos, C. limon, C. tangerina and Poncirus
trifoliata to evaluate the resisted rootstock to Phytophthora
root rot. P. parasitica infection notably decreased plant
growth, root morphology and activities of pathogenesis-related proteins
(PRs) in C. limon and C.
tangerina. Root β-1,3-glucanase, chitinase and phenylalanine
ammonialyase activities significantly increased in C. junos
and P. trifoliata after infection with P. parasitica.
P. parasitica infection notably decreased root salicylic
acid concentrations in C. limon, C. tangerina and
P. trifoliata, while increasing it in C. junos. An
opposite trend was observed in root jasmonic acid levels after infection
with P. parasitica, relative to root salicylic acid. Root
nitric oxide and calmodulin concentrations were significantly increased
in P. parasitica-infected C. junos, C. tangerina
and P. trifoliata, while C. limon exhibited a decrease.
These results demonstrated that citrus species like C. junos
and P. trifoliata displayed a much higher resistance to
Phytophthora-induced root rot, and C. limon and C.
tangerina showed a comparatively lower degree of resistance.
Keywords: Citrus junos;
pathogenesis-related protein; Phytophthora parasitica; poncirus
trifoliata
ABSTRAK
Negara China ialah salah sebuah negara
pengeluar sitrus terbesar di Asia dengan jangkitan Phytophthora
parasitica telah menjadi ancaman utama dalam mengekalkan pengeluaran
sitrus berjangka panjang. Kajian yang dicadangkan untuk mengkaji
kesan P. parasitica pada Citrus junos, C. limon,
C. tangerina dan Poncirus trifoliata bagi menilai
akar umbi yang ditentang terhadap reput akar Phytophthora.
Jangkitan P. parasitica terutamanya menurunkan pertumbuhan
tumbuhan, morfologi akar dan aktiviti protein yang berkaitan patogenesis
(PR) pada C. limon dan C. tangerina. Akar β-1,3-glukanase,
kitinase and fenilalanina ammonia-liase meningkat dengan ketara
pada C. junos dan P. trifoliata selepas jangkitan
P. parasitica. P. parasitica terutamanya menurunkan
kepekatan asid salisilik akar dalam C. limon, C. tangerina
dan P. trifoliata manakala meningkatkannya dalam C.
junos. Tren yang bertentangan telah diperhatikan pada peringkat
asid jasmonik akar selepas jangkitan dengan P. parasitica berbanding
dengan asid salisilat akar. Kepekatan nitrik oksida dan kalmodulin
akar meningkat dengan ketara pada P. parasitica yang dijangkiti
C. junos, C. tangerina dan P. trifoliata manakala
C. limon menunjukkan suatu penurunan. Keputusan ini menunjukkan
bahawa spesies sitrus seperti C. junos dan P. trifoliata
menunjukkan rintangan yang lebih tinggi terhadap reput akar diinduksi
dengan Phytophthora serta C. limon dan C. tangerina
menunjukkan tahap rintangan yang agak rendah.
Kata kunci: Citrus junos; Phytophthora parasitica; Poncirus trifoliata;
protein yang berkaitan pathogenesis
RUJUKAN
Bari, R. & Jones,
J.D. 2009. Role of plant hormones in plant defence responses. Plant Molecular
Biology 69(4): 473-488.
Bonnet, J., Danan, S.,
Boudet, C., Barchi, L., Sage-Palloix, A. & Caromel, B. 2007. Are the
polygenic architectures of resistance of Phytophthora capsici and P.
parasitica independent in pepper? Theoreticao & Appied Genetic 115(2):
253-264.
Davis, R.M. & Menge,
J.A. 1980. Influence of Glomus fasciculatus and soil phosphorus on Phytophthora root rot of citrus. Phytopathology 70(5): 447-452.
Dixon, R.A., Achnine,
L., Kota, P., Liu, C.J., Reddy, M.S. & Wang, L. 2002. The phenylpropanoid
pathway and plant defence-a genomics perspective. Molecular Plant Pathology 3(5):
371-390.
Esquerré-Tugayé, M.T.,
Boudart, G. & Dumas, B. 2000. Cell wall degrading enzymes, inhibitory
proteins, and oligosaccharides participate in the molecular dialogue between
plants and pathogens. Plant Physiology and Biochemistry 38(1): 157- 163.
Glazebrook, J. 2001.
Genes controlling expression of defense responses in Arabidopsis-2001 status. Current
Opinion in Plant Biology 4(4): 301-308.
Gray, M.A., Hao, W.,
Forster, H. & Adaskaveg, J.E. 2017. Effect of new Oomycete-specific
fungicides on tree health, fruit yields and Phytophthora root rot of
citrus. Phytopathology 107: 186.
Hu, N., Tu, X.R., Li,
K.T., Ding, H., Li, H., Zhang, H.W., Tu, G.Q. & Huang, L. 2017. Changes in
protein content and chitinase and β-1,3-glucanase activities of rice with
blast resistance induced by Ag-antibiotic 702. Plant Diseases and Pests 8(4):
33-36.
Kim, D.S. & Hwang,
B.K. 2014. An important role of the pepper phenylalanine ammonia-lyase gene (PAL1)
in salicylic acid-dependent signalling of the defence response to microbial
pathogens. Journal of Experimental Botany 65(9): 2295- 2306.
Kim, M.C., Chung, W.S.,
Yun, D.J. & Cho, M.J. 2009. Calcium and calmodulin-mediated regulation of
gene expression in plants. Molecular Plant 2(1): 13-21.
Klarzynski, O., Plesse,
B. & Joubert, J.M. 2000. Linear β-1,3- glucans are elicitors of
defense responses in tobacco. Plant Physiology 124: 1027-1037.
Latijnhouwers, M., De
Wit, P.J. & Govers, F. 2003. Oomycetes and fungi: Similar weaponry to
attack plants. Trends in Microbiology 11(10): 462-469.
Li, Y.Z., Zheng, X.H.,
Tang, H.L., Zhu, J.W. & Yang, J.M. 2003. Increase of β-1,3-glucanase
and chitinase activities in cotton callus cells treated by salicylic acid and
toxin of Verticillium dahliae. Acta Botanica Sinica 45(7):
802-808.
Lindermayr, C.,
Saalbach, G. & Durner, J. 2005. Proteomic identification of S-nitrosylated
proteins in Arabidopsis. Plant Physiology 137(3): 921-930.
Liu, J.J. & Yin,
G.Y. 1993. Study on the root rot and yellow leaf disease of citrus in Jiangsu
and Hubei provinces. Journal of Nanjing Agricultural University 16(1):
38-44 (in Chinese with English abstract).
Mozzetti, C., Ferraris,
L., Tamietti, G. & Matta, A. 1995. Variation in enzyme activities in leaves
and cell suspensions as markers of incompatibility in different Phytophthora-pepper
interactions. Physiological and Molecular Plant Pathology 46(2): 95-107.
Queiroz, B.P.V. &
Melo, I.S. 2006. Antagonism of Serratia marcescens towards Phytophthora
parasitica and its effects in promoting the growth of citrus. Brazilian
Journal of Microbiology 37(4): 448-450.
Robert-Seilaniantz, A.,
Grant, M. & Jones, J.D. 2011. Hormone crosstalk in plant disease and
defense: More than just jasmonate-salicylate antagonism. Annual Review of
Phytopathology 49: 317-343.
Sanders, P.M., Lee,
P.Y., Biesgen, C., Boone, J.D., Beals, T.P., Weiler, E.W. & Goldberg, R.B.
2000. The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the
jasmonic acid synthesis pathway. The Plant Cell 12(7): 1041-1061.
Shiraishi, T., Yamada,
T., Nicholson, R.L. & Kunoh, H. 1995. Phenylalanine ammonia-lyase in
barley: Activity enhancement in response to Erysiphe graminis f. sp.
Hordei (race 1) a
pathogen, and Erysiphe pisi, a nonpathogen. Physiological and
Molecular Plant Pathology 46(2): 153- 162.
Song, Y.Y., Zeng, R.S.,
Xu, J.F., Li, J., Shen, X. & Yihdego, W.G. 2010. Interplant communication
of tomato plants through underground common mycorrhizal networks. PloS ONE 5(10):
e13324.
Vallad, G.E. &
Goodman, R.M. 2004. Systemic acquired resistance and induced systemic
resistance in conventional agriculture. Crop Science 44(6): 1920-1934.
Wasternack, C. &
Parthier, B. 1997. Jasmonate-signalled plant gene expression. Trends in
Plant Science 2(8): 302-307.
Yan, H.X., Zhong, Y.,
Jiang, B., Zhou, B.R., Wu, B. & Zhong, GY. 2017. Guanggan (Citrus
reticulata) shows strong resistance to Phytophthora nicotianae. Scientia
Horticulturae 228: 141-149.
Zhang, L., Wei, L.,
Tang, X.F., Wang, W.W., Yu, Z.Y. & Liu, L.J. 2017. Bioinformatics analysis
of soybean β-1,3-glucanase (GmBG1) and its homologous proteins. Genomics
and Applied Biology 36(3): 1035-1042.
Zhou, C.H. 1999. Resistance
identification of citrus somatic cell hybrid to Phytophthora parasitica and
study of Phytophthora parasitica toxin. Doctoral dissertation, Wuhan:
Huazhong Agricultural University (Unpublished).
*Pengarang untuk surat-menyurat; email: wuqiangsh@163.com
|