Sains Malaysiana 47(8)(2018): 1709–1723
http://dx.doi.org/10.17576/jsm-2018-4708-10
Cloning and Analysis of the Eg4CL1 Gene
and Its Promoter from Oil Palm (Elaeis guineensis Jacq.)
(Pengklonan dan Analisis Gen Eg4CL1 dan
Promoternya daripada Kelapa Sawit (Elaeis guineensis Jacq.))
YUSUF CHONG
YU
LOK1,2,
IDRIS
ABU
SEMAN3,
NOR
AINI
AB
SHUKOR4,5,
MOHD
NORFAIZULL
MOHD
NOR6
& MOHD PUAD ABDULLAH6*
1Faculty of
Plantation and Agrotechnology, Universiti Teknologi MARA,
Kampus Jasin, 77300 Merlimau, Melaka, Malaysia
2Agricultural Biotechnology Research
Group, Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA,
40450 Shah Alam, Selangor Darul Ehsan, Malaysia
3Malaysian Palm
Oil Board (MPOB), No 6, Persiaran Institusi, Bandar
Baru Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia
4Department
of Forest Management, Faculty of Forestry, Universiti Putra Malaysia,
43400 UPM
Serdang, Selangor Darul Ehsan, Malaysia
5Institute of Tropical Forestry
and Forest Product, Universiti Putra Malaysia, 43400 UPM Serdang,
Selangor Darul Ehsan, Malaysia
6Department of Cell and
Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences,
Universiti
Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
Diserahkan: 9 September
2016/Diterima: 26 April 2018
ABSTRACT
The empty fruit bunches of oil palm
have been used as the raw material to produce biofuel. However,
the lignin present in oil palm tissues hampers the enzymatic saccharification
of lignocellulosic biomass and lower the yield of biofuel produced.
Hence, various efforts were taken to identify the lignin biosynthetic
genes in oil palm and to investigate their regulation at the molecular
level. In this study, a lignin biosynthetic gene, Eg4CL1 and its promoter were isolated from the oil palm. Eg4CL1
contains the acyl-activating enzyme consensus motif and boxes
I & II which are present in other 4CL homologs. Eg4CL1
was clustered together with known type I 4CL proteins
involved in lignin biosynthesis in other plants. Gene expression
analysis showed that Eg4CL1 was expressed abundantly in different
organs of oil palm throughout the course of development, reflecting
its involvement in lignin biosynthesis in different organs at all
stages of growth. The presence of the lignification toolbox - AC
elements in the 1.5 kb promoter of Eg4CL1 further suggests
the potential role of the gene in lignin biosynthesis in oil palm.
Together, these results suggested that Eg4CL1 is a potential
candidate gene involved in lignin biosynthesis in oil palm.
Keywords: Biofuel; lignin; oil palm;
promoter; 4CL
ABSTRAK
Tandan kosong buah kelapa sawit telah digunakan sebagai bahan asas
untuk menghasilkan biofuel. Walau bagaimanapun, lignin yang terdapat
dalam tisu kelapa sawit menghalang proses sakarifikasi enzimatik
biojisim lignoselulosa dan mengurangkan hasil bahan api biologi
yang dihasilkan. Oleh itu, pelbagai usaha telah diambil untuk mengenal
pasti gen biosintesis lignin dalam kelapa sawit dan untuk mengkaji
pengawalaturannya pada peringkat molekul. Dalam kajian ini, gen
biosintesis lignin, Eg4CL1 dan promoternya
telah dipencilkan daripada kelapa sawit. Eg4CL1 mengandungi
motif konsensus enzim pengaktifan asil dan kotak I & II yang
terdapat dalam homolog 4CL yang lain. Eg4CL1 berkelompok
bersama dengan protein 4CL yang diketahui terlibat
dalam biosintesis lignin dalam tumbuhan lain. Analisis pengekspresan
gen menunjukkan bahawa Eg4CL1 diekspres dengan banyak dalam
organ kelapa sawit yang berbeza pada semua peringkat pertumbuhan,
mencerminkan penglibatannya dalam biosintesis lignin dalam organ
yang berbeza pada semua peringkat pertumbuhan. Kehadiran peti alat
lignifikasi - unsur AC dalam promoter Eg4CL1 1.5 kb selanjutnya
menyokong potensi gen ini yang berperanan dalam biosintesis lignin
pada pokok kelapa sawit. Secara keseluruhannya, keputusan kajian
ini mencadangkan Eg4CL1 sebagai calon gen yang berpotensi
terlibat dalam biosintesis lignin pada pokok kelapa sawit.
Kata
kunci: Biofuel; kelapa sawit; lignin; promoter; 4CL
RUJUKAN
Bahariah, B., Parveez,
G.K.A., Masani, M.Y.A., Masura, S.S., Khalid, N. & Othman, R.Y. 2013.
Biolistic transformation of oil palm using the phosphomannose isomerase (pmi)
gene as a positive selectable marker. Biocatalysis and Agricultural
Biotechnology 2: 295-304.
Baumann, K., De Paolis,
A., Costantino, P. & Gualberti, G. 1999. The DNA binding site of the dof
protein NtBBF1 is essential for tissue-specific and auxin-regulated expression
of the rolb oncogene in plants. The Plant Cell 11: 323-334.
Carroll, B.J., Klimyuk,
V.I., Thomas, C.M., Bishop, G.J., Harrison, K., Scofield, S.R. & Jones,
J.D. 1995. Germinal transpositions of the maize element dissociation from T-DNA
loci in tomato. Genetics 139: 407-420.
Chao, N., Liu, S.X.,
Liu, B.M., Li, N., Jiang, X.N. & Gai, Y. 2014. Molecular cloning and
functional analysis of nine cinnamyl alcohol dehydrogenase family members in Populus
tomentosa. Planta 240: 1097-1112.
Chapple, C., Ladisch, M.
& Meilan, R. 2007. Loosening lignin’s grip on biofuel production. Nature
Biotechnology 25: 746- 748.
Chen, F. & Dixon,
R.A. 2007. Lignin modification improves fermentable sugar yields for biofuel
production. Nature Biotechnology 25: 759-761.
Ehlting, J., Büttner,
D., Wang, Q., Douglas, C.J., Somssich, I.E. & Kombrink, E. 1999. Three
4-Coumarate: Coenzyme A ligases in Arabidopsis thaliana represent two
evolutionarily divergent classes in angiosperms. Plant Journal 19: 9-20.
Filichkin, S.A.,
Leonard, J.M., Monteros, A., Liu, P.P. & Nonogaki, H. 2004. A novel
endo-beta-mannanase gene in tomato LeMAN5 is associated with anther and pollen
development. Plant Physiology 134: 1080-1087.
Fu, C., Xiao, X., Xi,
Y., Ge, Y., Chen, F., Bouton, J., Dixon, R.A. & Wang, Z.Y. 2011.
Downregulation of cinnamyl alcohol dehydrogenase (CAD) leads to improved
saccharification efficiency in switchgrass. Bioenergy Research 4:
153-164.
Gao, D., Haarmeyer, C.,
Balan, V., Whitehead, T.A., Dale, B.E. & Chundawat, S.P. 2014. Lignin
triggers irreversible cellulase loss during pretreated lignocellulosic biomass
saccharification. Biotechnology for Biofuels 7: 175.
Gao, S., Yu, H.N., Xu,
R.X., Cheng, A.X. & Lou, H.X. 2015. Cloning and functional characterization
of a 4-coumarate COA ligase from liverwort Plagiochasma appendiculatum. Phytochemistry 111: 48-58.
Goda, H., Sawa, S.,
Asami, T., Fujioka, S., Shimada, Y. & Yoshida, S. 2004. Comprehensive
comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis.
Plant Physiology 134: 1555-1573.
Goebels, C., Thonn, A.,
Gonzalez-Hilarion, S., Rolland, O., Moyrand, F., Beilharz, T.H. & Janbon,
G. 2013. Introns regulate gene expression in Cryptococcus neoformans in
a Pab2p dependent pathway. PLoS Genetics 9(8): e1003686.
Grierson, C., Du, J.S.,
Zabala, M., Beggs, K., Smith, C., Holdsworth, M. & Bevan, M. 1994. Separate cis sequences and trans factors direct metabolic and
developmental regulation of a potato tuber storage protein gene. Plant
Journal 5: 815-826.
Gui, J., Shen, J. &
Li, L. 2011. Functional characterization of evolutionarily divergent
4-coumarate: Coenzyme A ligases in rice. Plant Physiology 157: 574-586.
Hall, T.A. 1999.
BioEdit: A user-friendly biological sequence alignment editor and analysis
program for windows 95/98/ NT. Nucleic Acids Symposium Series 41: 95-98.
Hamberger, B., Ellis,
M., Friedmann, M., de Azevedo Souza, C., Barbazuk, B. & Douglas, C.J. 2007.
Genome-wide analyses of phenylpropanoid-related genes in Populus
trichocarpa, Arabidopsis thaliana, and Oryza sativa: The populus
lignin toolbox and conservation and diversification of angiosperm gene
families. Canadian Journal of Botany 85: 1182-1201.
Hamberger, B. &
Hahlbrock, K. 2004. The 4-coumarate: CoA ligase gene family in Arabidopsis
thaliana comprises one rare, sinapate-activating and three commonly
occurring isoenzymes. Proceedings of the National Academy of Sciences of the
United States of America 101: 2209-2214.
Hatton, D., Sablowski,
R., Yung, M.H., Smith, C., Schuch, W. & Bevan, M. 1995. Two
classes of cis sequences contribute to tissue-specific expression
of a pal2 promoter in transgenic tobacco. The Plant Journal
7: 859-876.
Heath,
R., McInnes, R., Lidgett, A., Huxley, H., Lynch, D., Jones, E.,
Mahoney, N. & Spangenberg, G. 2002. Isolation and characterisation
of three 4-coumarate: Coa-ligase homologue cdnas from Perennial
Ryegrass (Lolium perenne). Journal of Plant Physiology
159: 773-779.
Hirano, K.,
Kondo, M., Aya, K., Miyao, A., Sato, Y., Antonio, B.A., Namiki, N., Nagamura,
Y. & Matsuoka, M. 2013. Identification of transcription factors involved in
rice secondary cell wall formation. Plant and Cell Physiology 54:
1791-1802.
Hu, W.J.,
Kawaoka, A., Tsai, C.J., Lung, J., Osakabe, K., Ebinuma, H. & Chiang, V.L.
1998. Compartmentalized expression of two structurally and functionally
distinct 4-coumarate: CoA ligase genes in Aspen (Populus tremuloides). Proceedings
of the National Academy of Sciences of the United States of America 95:
5407-5412.
Hu, Y., Gai,
Y., Yin, L., Wang, X., Feng, C., Feng, L., Li, D., Jiang, X.N. & Wang, D.C.
2010. Crystal structures of a populus tomentosa 4-coumarate: CoA ligase
shed light on its enzymatic mechanisms. The Plant Cell 22: 3093-3104.
Huang, J.,
Gu, M., Lai, Z., Fan, B., Shi, K., Zhou, Y.H., Yu, J.Q. & Chen, Z. 2010.
Functional analysis of the Arabidopsis PAL gene family in plant growth,
development, and response to environmental stress. Plant Physiology 153:
1526-1538.
Ibrahim,
M.F., Abd-Aziz, S., Yusoff, M.E.M., Phang, L.Y. & Hassan, M.A. 2015.
Simultaneous enzymatic saccharification and ABE fermentation using pretreated
oil palm empty fruit bunch as substrate to produce butanol and hydrogen as
biofuel. Renewable Energy 77: 447-455.
Jung, J.H.,
Vermerris, W., Gallo, M., Fedenko, J.R., Erickson, J.E. & Altpeter, F.
2013. RNA interference suppression of lignin biosynthesis increases fermentable
sugar yields for biofuel production from field-grown sugarcane. Plant
Biotechnology Journal 11: 709-716.
Kumar, A.
& Ellis, B.E. 2003. 4-Coumarate: CoA ligase gene family in Rubus idaeus:
cDNA structures, evolution, and expression. Plant Molecular Biology 51:
327-340.
Kizis, D.
& Pagès, M. 2002. Maize DRE-binding proteins DBF1 and DBF2 are involved in
rab17 regulation through the drought-responsive element in an ABA-dependent
pathway. The Plant Journal 30: 679-689.
Kropat, J.,
Tottey, S., Birkenbihl, R.P., Depege, N., Huijser, P. & Merchant, S. 2005.
A regulator of nutritional copper signaling in chlamydomonas is an SBP domain
protein that recognizes the GTAC core of copper response element. Proceedings
of the National Academy of Sciences of the United States of America 102:
18730-18735.
Lee, D.,
Ellard, M., Wanner, L.A., Davis, K.R. & Douglas, C.J. 1995. The Arabidopsis
thaliana 4-coumarate: CoA ligase (4CL) gene: Stress and developmentally
regulated expression and nucleotide sequence of its cDNA. Plant Molecular
Biology 28: 871-884.
Lescot, M.,
Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouzé, P.
& Rombauts, S. 2002. PlantCARE, a database of plant cis-acting
regulatory elements and a portal to tools for in silico analysis of
promoter sequences. Nucleic Acids Research 30: 325-327.
Li, Y., Im
Kim, J., Pysh, L. & Chapple, C. 2015. Four isoforms of Arabidopsis
thaliana 4-coumarate: CoA ligase (4CL) have overlapping yet distinct roles
in phenylpropanoid metabolism. Plant Physiology 169: 2409-2421.
Li, Z.B., Li,
C.F., Li, J. & Zhang, Y.S. 2014. Molecular cloning and functional
characterization of two divergent 4-coumarate: coenzyme A ligases
from Kudzu (Pueraria lobata). Biological & Pharmaceutical
Bulletin 37: 113-122.
Marchler-Bauer,
A., Lu, S., Anderson, J.B., Chitsaz, F., Derbyshire, M.K., DeWeese-Scott, C.,
Fong, J.H., Geer, L.Y., Geer, R.C., Gonzales, N.R. & Gwadz, M. 2010. CDD: A
conserved domain database for the functional annotation of proteins. Nucleic
Acids Research 39: 225-229.
Masani,
M.Y.A., Noll, G.A., Parveez, G.K.A., Sambanthamurthi, R. & Prüfer, D. 2014.
Efficient transformation of oil palm protoplasts by peg-mediated transfection
and DNA microinjection. PloS One doi. 10.1371/journal.pone.0096831.
Mena, M.,
Cejudo, F.J., Isabel-Lamoneda, I. & Carbonero, P. 2002. A role for the DOF
transcription factor BPBF in the regulation of gibberellin-responsive genes in
Barley Aleurone. Plant Physiology 130: 111-119.
Nagaya, S.,
Kawamura, K., Shinmyo, A. & Kato, K. 2009. The HSP terminator of Arabidopsis
thaliana increases gene expression in plant cells. Plant and Cell
Physiology 51: 328-332.
Neutelings,
G. 2011. Lignin variability in plant cell walls: Contribution of new models. Plant
Science 181: 379-386.
Nordin, K.,
Vahala, T. & Palva, E.T. 1993. Differential expression of two related,
low-temperature-induced genes in Arabidopsis thaliana (L.) Heynh. Plant
Molecular Biology 21: 641-653.
Ochman, H.,
Gerber, A.S. & Hartl, D.L. 1988. Genetic applications of an inverse
polymerase chain reaction. Genetics 120: 621-623.
Park, H.C.,
Kim, M.L., Kang, Y.H., Jeon, J.M., Yoo, J.H., Kim, M.C., Park, C.Y., Jeong,
J.C., Moon, B.C., Lee, J.H. & Yoon, H.W. 2004. Pathogen- and NaCl-induced
expression of the SCaM-4 promoter is mediated in part by a GT-1 box that
interacts with a GT-1-like transcription factor. Plant Physiology 135:
2150-2161.
Piarpuzan,
D., Quintero, J.A. & Cardona, C.A. 2011. Empty fruit bunches from oil palm
as a potential raw material for fuel ethanol production. Biomass and
Bioenergy 35: 1130-1137.
Raes, J.,
Rohde, A., Christensen, J.H., Van de Peer, Y. & Boerjan, W. 2003.
Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant
Physiology 133: 1051-1071.
Rao, G.,
Pan, X., Xu, F., Zhang, Y., Cao, S., Jiang, X. & Lu, H. 2015. Divergent and
overlapping function of five 4-Coumarate/Coenzyme A ligases from Populus
tomentosa. Plant Molecular Biology Reporter 33: 841-854.
Rastogi, S.,
Kumar, R., Chanotiya, C.S., Shanker, K., Gupta, M.M., Nagegowda, D.A. &
Shasany, A.K. 2013. 4-Coumarate: CoA ligase partitions metabolites for eugenol
biosynthesis. Plant and Cell Physiology 54: 1238-1252.
Rose, A.,
Meier, I. & Wienand, U. 1999. The tomato i-box binding factor LeMYBI is a
member of a novel class of myb-like proteins. The Plant Journal 20:
641-652.
Rubio-Somoza, I., Martinez, M., Abraham, Z., Diaz,
I. & Carbonero, P. 2006. Ternary complex formation between HvMYBS3
and other factors involved in transcriptional control in barley
seeds. Plant Journal 47: 269-281.
Shen, H.,
Mazarei, M., Hisano, H., Escamilla-Trevino, L., Fu, C., Pu, Y., Rudis, M.R.,
Tang, Y., Xiao, X., Jackson, L. & Li, G. 2013. A genomics approach to
deciphering lignin biosynthesis in switchgrass. The Plant Cell 25:
4342-4361.
Shen,
H., He, X., Poovaiah, C.R., Wuddineh, W.A., Ma, J., Mann, D.G., Wang, H.,
Jackson, L., Tang, Y., Neal Stewart, C. & Chen, F. 2012. Functional
characterization of the switchgrass (Panicum virgatum) R2R3-MYB
transcription factor PvMYB4 for improvement of lignocellulosic feedstocks. New
Phytologist 193: 121-136.
Silber, M.V., Meimberg, H. & Ebel, J. 2008. Identification of
a 4-Coumarate: CoA ligase gene family in the moss, Physcomitrella patens Q. Phytochemistry 69: 2449-2456.
Simpson, S.D., Nakashima, K., Narusaka, Y.,
Seki, M., Shinozaki, K. & Yamaguchi-Shinozaki, K. 2003. Two
different novel cis-acting elements of erd1, a clpA homologous arabidopsis
gene function in induction by dehydration stress and dark-induced
senescence. The Plant Journal 33: 259-270.
Soltani,
B.M., Ehlting, J., Hamberger, B. & Douglas, C.J. 2006. Multiple Cis-regulatory
elements regulate distinct and complex patterns of developmental and wound-induced
expression of Arabidopsis thaliana 4CL gene family members. Planta 224:
1226-1238.
Souza, A.C.,
Barbazuk, B., Ralph, S.G., Bohlmann, J., Hamberger, B. & Douglas, C.J.
2008. Genome-wide analysis of a land plant-specific acyl: CoenzymeA synthetase
(ACS) gene family in arabidopsis, poplar, rice and physcomitrella. New
Phytologist 179: 987-1003.
Sun, H., Li,
Y., Feng, S., Zou, W., Guo, K., Fan, C., Si, S. & Peng, L. 2013. Analysis
of five rice 4-coumarate: Coenzyme a ligase enzyme activity and stress response
for potential roles in lignin and flavonoid biosynthesis in rice. Biochemical
and Biophysical Research Communications 430: 1151-1156.
Sykes, R.W.,
Gjersing, E.L., Foutz, K., Rottmann, W.H., Kuhn, S.A., Foster, C.E., Ziebell,
A., Turner, G.B., Decker, S.R., Hinchee, M.A. & Davis, M.F. 2016.
Down-regulation of p-coumaroyl quinate/shikimate 3′-hydroxylase
(c3′h) and cinnamate 4-hydroxylase (c4h) genes in the lignin biosynthetic
pathway of Eucalyptus urophylla × Eucalyptus grandis leads
to improved sugar release. Biotechnology for Biofuels 9: 691-699.
Tamura, K.,
Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. 2011. MEGA5:
Molecular evolutionary genetics analysis using maximum likelihood, evolutionary
distance, and maximum parsimony methods. Molecular Biology and Evolution 28:
2731-2739.
Tian, X.,
Xie, J., Zhao, Y., Lu, H., Liu, S., Qu, L., Li, J., Gai, Y. & Jiang, X.
2013a. Sense-, antisense- and RNAi-4CL1 regulate soluble phenolic acids, cell
wall components and growth in transgenic Populus tomentosa Carr. Plant
Physiology and Biochemistry 65: 111-119.
Tian, Q.,
Wang, X., Li, C., Lu, W., Yang, L., Jiang, Y. & Luo, K. 2013b. Functional
characterization of the poplar R2R3-MYB transcription factor PtoMYB216 involved
in the regulation of lignin biosynthesis during wood formation. PLoS ONE doi.
10.1371/journal.pone.0076369.
Trabucco, G.M.,
Matos, D.A., Lee, S.J., Saathoff, A.J., Priest, H.D., Mockler, T.C.,
Sarath, G. & Hazen, S.P. 2013. Functional characterization of
cinnamyl alcohol dehydrogenase and caffeic acid o-methyltransferase
in Brachypodium distachyon. BMC Biotechnology doi.
10.1186/1472-6750-13-61.
Van Acker,
R., Leplé, J.C., Aerts, D., Storme, V., Goeminne, G., Ivens, B., Légée, F.,
Lapierre, C., Piens, K., Van Montagu, M.C. & Santoro, N. 2014. Improved
saccharification and ethanol yield from field-grown transgenic poplar deficient
in cinnamoyl-coa reductase. Proceedings of the National Academy of Sciences
of the United States of America 111: 845-850.
Vanholme,
R., Demedts, B., Morreel, K., Ralph, J. & Boerjan, W. 2010. Lignin
biosynthesis and structure. Plant Physiology 153: 895-905.
Voelker, S.L.,
Lachenbruch, B., Meinzer, F.C., Jourdes, M., Ki, C., Patten, A.M.,
Davin, L.B., Lewis, N.G., Tuskan, G.A., Gunter, L. & Decker,
S.R. 2010. Antisense down-regulation of 4CL expression alters lignification,
tree growth, and saccharification potential of field-grown poplar.
Plant Physiology 154: 874-886.
Wagner, A.,
Donaldson, L., Kim, H., Phillips, L., Flint, H., Steward, D., Torr, K., Koch,
G., Schmitt, U. & Ralph, J. 2009. Suppression of 4-Coumarate-CoA ligase in
the coniferous gymnosperm Pinus radiata. Plant Physiology 149:
370-383.
Wang, S.,
Li, E., Porth, I., Chen, J.G., Mansfield, S.D. & Douglas, C.J. 2014.
Regulation of secondary cell wall biosynthesis by poplar R2R3 MYB transcription
factor PtrMYB152 in Arabidopsis. Scientific Reports 4: 5054.
Wang, T.,
Zhang, N. & Du, L. 2005. Isolation of RNA of high quality and yield from Ginkgo
biloba leaves. Biotechnology Letters 27: 629-633.
Xu, B., Escamilla-Treviño, L.L., Sathitsuksanoh,
N., Shen, Z., Shen, H., Percival Zhang, Y.H., Dixon, R.A. &
Zhao, B. 2011. Silencing of 4-coumarate: Coenzyme a ligase in switchgrass
leads to reduced lignin content and improved fermentable sugar yields
for biofuel production. New Phytologist 192: 611-625.
Xu, L., Zhu,
L., Tu, L., Liu, L., Yuan, D., Jin, L., Long, L. & Zhang, X. 2011. Lignin
metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium
dahliae as revealed by RNA-seq-dependent transcriptional analysis and
histochemistry. Journal of Experimental Botany 62: 5607-5621.
Xu, Q., Yin,
X.R., Zeng, J.K., Ge, H., Song, M., Xu, C.J., Li, X., Ferguson, I.B. &
Chen, K.S. 2014. Activator-and repressor-type MYB transcription factors are
involved in chilling injury induced flesh lignification in loquat via their
interactions with the phenylpropanoid pathway. Journal of Experimental
Botany 65: 4349-4359.
Yan, L., Xu,
C., Kang, Y., Gu, T., Wang, D., Zhao, S. & Xia, G. 2013. The heterologous
expression in Arabidopsis thaliana of sorghum transcription factor
SbbHLH1 downregulates lignin synthesis. Journal of Experimental Botany 64:
3021-3032.
Zhang, Z.L.,
Xie, Z., Zou, X., Casaretto, J., Ho, T.H.D. & Shen, Q.J. 2004. A rice WRKY
gene encodes a transcriptional repressor of the gibberellin signaling pathway
in aleurone cells. Plant Physiology 134: 1500-1513.
Zhong, R.
& Ye, Z.H. 2009. Transcriptional regulation of lignin biosynthesis. Plant
Signaling & Behavior 4: 1028-1034.
*Pengarang untuk surat-menyurat; email: puad@upm.edu.my
|