Sains Malaysiana 47(8)(2018): 1787–1794
http://dx.doi.org/10.17576/jsm-2018-4708-17
Physicochemical
and Structural Characterization of Surface Modified Electrospun
PMMA Nanofibre
(Pencirian
Fizikokimia dan Struktur bagi Permukaan Termodifikasi Elektroputaran
Nanogentian PMMA)
RABIATUL ADAWIYAH RAZALI1, YOGESWARAN LOKANATHAN1, SHIPLU ROY CHOWDHURY1, AMINUDDIN SAIM2 & RUSZYMAH HAJI IDRUS1,3*
1Tissue Engineering Centre, Universiti Kebangsaan Malaysia (UKM)
Medical Centre, Jalan Yaa'cob Latiff, 56000 Cheras, Kuala Lumpur,
Federal Territory, Malaysia
2Ear, Nose and Throat Consultant Clinic, KPJ Ampang Puteri
Specialist Hospital, Jalan Mamanda 9, Taman Dato Ahmad Razali, 68000 Ampang,
Selangor Darul Ehsan, Malaysia
3Department of Physiology, Universiti Kebangsaan Malaysia, Jalan
Yaa'cob Latiff, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia
Diserahkan: 8 Januari 2018/Diterima: 19
April 2018
ABSTRACT
Although electrospun poly(methyl methacrylate)
(PMMA) may mimic structural features of
extracellular matrix, its highly hydrophobic nature causes reduced
cell attachment. This study analysed the physicochemical and structural
changes of the surface modified PMMA nanofiber. The electrospun PMMA
nanofibers (PM) were surface-treated as follows:
PM
alone, collagen coated-PM (PM-C),
UV-irradiated
PM
(PM-UV), collagen coated UV-irradiated
PM
(PM-C-UV) and collagen coated-PM
crosslinked with genipin (PM-C-GEN). They were subjected to scanning electron microscopy,
Fourier transform infrared (FTIR), cell attachment analysis,
X-ray photoelectron spectroscopy (XPS),
atomic force microscopy and X-ray powder diffraction (XRD).
The surface roughness was lower in PM-C-UV group compared to others.
Based on FTIR results, all expected functional
group were present in all groups. XPS result showed that there are
changes in the mass concentration of UV-treated surfaces and in the
collagen coated surfaces. All PM groups showed amorphous nature
through XRD. UV irradiation
and collagen coating were shown to increase PM’s
functional groups and modify its surface, which contributed to the
increased attachment of cells onto the inert PM scaffold. As conclusion, collagen
coated UV irradiated PMMA provided
a better surface for cell to attach hence are suitable to be used
further as scaffold for in vitro model.
Keywords: Electrospun nanofiber; PMMA;
scaffold; surface modification; UV irradiation
ABSTRAK
Walaupun elektroputaran poli(metil metakrilat) (PMMA)
boleh memimik sifat struktur matriks ekstrasel, ia terlalu hidrofobik
lantas menyebabkan pengurangan pelekatan sel. Kajian ini telah menganalisis
perubahan fizikokimia dan strukur permukaan termodifikasi nanogentian
PMMA.
Permukaan terawat nanogentian PMMA (PM)
yang telah dielektroputar terbahagi seperti berikut: PM sahaja,
PM
bersalut kolagen (PM-C), PM diradiasi
dengan UV bersalut kolagen (PM-UV),
dan PM bersalut kolagen disilang dengan genipin (PM-C-GEN).
Antara analisis yang dijalankan adalah mikroskopi elektron penskanan
(SEM),
inframerah transformasi Fourier (FTIR), analisis pelekatan sel,
spektroskopi fotoelektron sinar-X (XPS), mikroskopi daya atom (AFM)
dan pembelauan sinar-X (XRD). Kekasaran permukaan kumpulan PM-C-UV
adalah kurang berbanding dengan yang lain. Berdasarkan
hasil FTIR,
semua kumpulan berfungsi yang dijangka wujud dalam semua kumpulan.
Keputusan XPS
menunjukkan bahawa terdapat perubahan dalam kepekatan
jisim pada permukaan yang telah di UV
radiasi dan yang telah disalut kolagen. XRD analisis menunjukkan semua
kumpulan PM mempunyai sifat amorf. Sinar UV dan
salutan kolagen telah menyebabkan peningkatan di dalam kumpulan
berfungsi PM lantas mengubah suai permukaannya dan menyebabkan peningkatan
pelekatan sel dalam perancah PM yang lengai. Kesimpulannya, PMMA
diradiasi dengan UV bersalut kolagen adalah permukaan
yang lebih baik untuk pelekatan sel dan menjadikannya sesuai untuk
digunakan sebagai perancah model in vitro.
Kata
kunci: Elektroputaran nanogentian; PMMA; perancah; permukaan terubah; sinar UV
RUJUKAN
Bigi, A., Cojazzi, G.,
Panzavolta, S., Roveri, N. & Rubini, K. 2002. Stabilization of gelatin
films by crosslinking with genipin. Biomaterials 23(24): 4827-4832.
Braghirolli, D.I., Steffens, D., Quintiliano, K., Acasigua,
G.A.X., Gamba, D., Fleck, R.A., Petzhold, C.L. & Pranke, P.
2014. The effect of sterilization methods on electronspun poly (lactide-co-glycolide)
and subsequent adhesion efficiency of mesenchymal stem cells. Journal
of Biomedical Materials Research Part B: Applied Biomaterials
102(4): 700-708.
Cui, H. & Sinko,
P.J. 2012. The role of crystallinity on differential attachment/proliferation
of osteoblasts and fibroblasts on poly (caprolactone-co-glycolide) polymeric
surfaces. Frontiers of Materials Science 6(1): 47-59.
Duan et al. (2016)
Duan, G., Zhang, C., Li,
A., Yang, X., Lu, L. & Wang, X. 2008. Preparation and characterization of
mesoporous zirconia made by using a poly (methyl methacrylate) template. Nanoscale
Research Letters 3(3): 118.
Englert, C., Blunk, T.,
Müller, R., von Glasser, S.S., Baumer, J., Fierlbeck, J., Heid, I.M., Nerlich,
M. & Hammer, J. 2007. Bonding of articular cartilage using a combination of
biochemical degradation and surface cross-linking. Arthritis Research &
Therapy 9(3): R47.
Eve, S. & Mohr, J.
2009. Study of the surface modification of the PMMA by UV-radiation. Procedia
Engineering 1(1): 237-240.
Feng, H., Zhang, L.
& Zhu, C. 2013. Genipin crosslinked ethyl cellulose-chitosan complex
microspheres for anti-tuberculosis delivery. Colloids Surf B Biointerfaces 103:
530-537.
Goddard, J.M. &
Hotchkiss, J.H. 2007. Polymer surface modification for the attachment of
bioactive compounds. Progress in Polymer Science 32(7): 698-725.
Gongjian, B., Yunxuan,
W. & Xingzhou, H. 1996. Surface modification of polyolefine by UV
lightozone treatment. Journal of Applied Polymer Science 60: 2397-2402.
Gopal, R., Kaur, S., Ma, Z., Chan, C., Ramakrishna, S. &
Matsuura, T. 2006. Electrospun nanofibrous filtration membrane.
Journal of Membrane Science 281(1-2): 581-586.
Gupta, P., Elkins, C.,
Long, T.E. & Wilkes, G.L. 2005. Electrospinning of linear homopolymers of
poly(methyl methacrylate): Exploring relationships between fiber formation,
viscosity, molecular weight and concentration in a good solvent. Polymer 46(13):
4799-4810.
Kaczmarek, H. &
Chaberska, H. 2009. AFM and XPS study of UV-irradiated poly (methyl
methacrylate) films on glass and aluminum support. Applied Surface Science 255(13):
6729-6735.
Kasahara, T., Shoji, S.
& Mizuno, J. 2012. Surface modification of polyethylene terephthalate
(PET) by 172-nm excimer lamp. Transactions of The Japan Institute
of Electronics Packaging 5(1): 47-54.
Ko, C.S., Wu, C.H.,
Huang, H.H. & Chu, I.M. 2007. Genipin cross-linking of type ii
collagen-chondroitin sulfate-hyaluronan scaffold for articular cartilage
therapy. Journal of Medical and Biological Engineering 27(1): 7-14.
Koo, G.H. & Jang,
J.H. 2009. Hydrophilic modification of poly (ethylene oxide) by UV irradiation. Textile Coloration and Finishing 21(5): 16-20.
Lai, J.Y. 2012.
Biocompatibility of genipin and glutaraldehyde cross-linked chitosan materials
in the anterior chamber of the eye. Int. J. Mol. Sci. 13(9):
10970-10985.
Lee, Y.S. &
Livingston Arinzeh, T. 2011. Electrospun nanofibrous materials for neural tissue
engineering. Polymers 3(4): 413- 426.
Lien, S.M., Li, W.T. & Huang, T.J. 2008. Genipin-crosslinked
gelatin scaffolds for articular cartilage tissue engineering with
a novel crosslinking method. Materials Science and Engineering:
C 28(1): 36-43.
Liu, Y., Ji, Y., Ghosh,
K., Clark, R.A., Huang, L. & Rafailovich, M.H. 2009. Effects of fiber
orientation and diameter on the behavior of human dermal fibroblasts on
electrospun PMMA scaffolds. J. Biomed. Mater. Res. A 90(4): 1092-1106.
Nie, H.Y., Walzak, M.J.,
Berno, B. & McIntyre, N.S. 1999. Atomic force microscopy study of
polypropylene surfaces treated by uv and ozone exposure modification of
morphology and adhesion force. Applied Surface Science 144: 627-632.
Oláh, A., Hillborg, H. & Vancso, G.J. 2005. Hydrophobic
recovery of UV/ozone treated poly (dimethylsiloxane): Adhesion studies
by contact mechanics and mechanism of surface modification. Applied
Surface Science 239(3): 410-423.
Olbrich, M., Punshon,
G., Frischauf, I., Salacinski, H.J., Rebollar, E., Romanin, C., Seifalian, A.M.
& Heitz, J. 2007. UV surface modification of a new nanocomposite polymer to
improve cytocompatibility. Journal of Biomaterials Science, Polymer Edition 18(4):
453-468.
Pashkuleva, I., Marques,
A.P., Vaz, F. & Reis, R.L. 2010. Surface modification of starch based
biomaterials by oxygen plasma or UV-irradiation. Journal of Materials
Science: Materials in Medicine 21(1): 21-32.
Pham, Q.P., Sharma, U.
& Mikos, A.G. 2006. Electrospinning of polymeric nanofibers
for tissue engineering applications: A review. Tissue Engineering
12(5): 1197-1211.
Polini, A., Pagliara,
S., Stabile, R., Netti, G.S., Roca, L., Prattichizzo, C., Gesualdo, L.,
Cingolani, R. & Pisignano, D. 2010. Collagen-functionalised electrospun
polymer fibers for bioengineering applications. Soft Matter 6(8): 1668.
Rabiatul, A.R., Lokanathan,
Y., Rohaina, C.M., Chowdhury, S.R., Aminuddin, B.S. & Ruszymah,
B.H.I. 2015. Surface modification of electrospun poly (methyl methacrylate)
(PMMA) nanofibers for the development of in vitro respiratory
epithelium model. Journal of Biomaterials Science, Polymer Edition
26(17): 1297-1311.
Reneker, D.H. &
Yarin, A.L. 2008. Electrospinning jets and polymer nanofibers. Polymer 49(10):
2387-2425.
Sheikh, F.A.,
Ju, H.W., Lee, J.M., Moon, B.M., Park, H.J., Lee, O.J., Kim, J.H., Kim, D.K.
& Park, C.H. 2015. 3D electrospun silk fibroin nanofibers for fabrication
of artificial skin. Nanomedicine: Nanotechnology, Biology and Medicine 11(3):
681-691.
Sill, T.J. & von Recum, H.A. 2008.
Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 29(13): 1989-2006.
Situma, C., Wang, Y., Hupert, M., Barany,
F., McCarley, R.L. & Soper, S.A. 2005. Fabrication of DNA microarrays onto
poly (methyl methacrylate) with ultraviolet patterning and microfluidics for
the detection of low-abundant point mutations. Analytical Biochemistry 340(1):
123-135.
Son, S.R., Linh, N.T.B., Yang, H.M. &
Lee, B.T. 2013. In vitro and in vivo evaluation of electrospun
PCL/PMMA fibrous scaffolds for bone regeneration. Science and Technology of
Advanced Materials 14(1): 015009.
Song, W., So, S.K., Wang, D., Qiu, Y.
& Cao, L. 2001. Angle dependent X-ray photoemission study on UV-ozone
treatments of indium tin oxide. Applied Surface Science 177(3): 158-164.
Tang, L., Thevenot, P. & Hu, W. 2008.
Surface chemistry influences implant biocompatibility. Current Topics in
Medicinal Chemistry 8(4): 270-280.
Viswanath, V., Maity, S., Bochinski,
J.R., Clarke, L.I. & Gorga, R.E. 2016. Enhanced crystallinity of polymer
nanofibers without loss of nanofibrous morphology via heterogeneous
photothermal annealing. Macromolecules 49(24): 9484-9492.
Wang, C., Lau, T.T., Loh, W.L., Su, K.
& Wang, D.A. 2011. Cytocompatibility study of a natural biomaterial crosslinker-
Genipin with therapeutic model cells. J. Biomed. Mater. Res. B Appl.
Biomater. 97(1): 58-65.
Yoo, J.S., Kim, Y.J., Kim, S.H. &
Choi, S.H. 2011. Study on genipin: A new alternative natural crosslinking agent
for fixing heterograft tissue. Korean J. Thorac. Cardiovasc. Surg. 44(3):
197-207.
*Pengarang untuk
surat-menyurat; email: ruszyidrus@gmail.com
|