Sains Malaysiana 47(8)(2018): 1853–1860
http://dx.doi.org/10.17576/jsm-2018-4708-25
Evaluation of Kenaf Yarn Properties as Affected
by Different Linear Densities
for Woven Fabric Laminated Composite Production
(Kajian ke atas Sifat Benang Kenaf Kesan daripada
Perbezaan Ketumpatan Linear
untuk Penghasilan Fabrik Tenunan Komposit
Berlaminasi)
AISYAH HUMAIRA ALIAS1*, PARIDAH MD. TAHIR1, KHALINA ABDAN2, MOHD SAPUAN SALIT3, MD. SAIDIN WAHAB4 & MOHD PAHMI SAIMAN5
1Institute of Tropical
Forestry and Forest Product (INTROP), Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
2Department of
Biocomposite Technology, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
3Faculty of Engineering, Universiti
Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
4Faculty of Mechanical
Engineering, Universiti Tun Hussien Onn Malaysia (UTHM),
86400 Batu Pahat, Johor Darul Takzim, Malaysia
5Politeknik Seberang
Perai (PSP), Jalan Permatang Pauh, 13500, Permatang Pauh, Pulau
Pinang, Malaysia
Diserahkan: 29 Mei 2017/Diterima:
14 April 2018
ABSTRACT
Currently, there is a growing interest
of using woven material in composite production for many applications
such as structural applications, non-structural applications, household
utilities, parts for automobile, aerospace components, flooring
and ballistic laminate composites. The structure and properties
of the woven fabric is very important as it dictate the woven composite
properties. The properties of yarn like linear density, twist factor
and strength can influence most of the woven fabric properties.
Strength of woven fabric is one of the most important properties
which make it superior in final composite applications. In this
study, the effects of linear density i.e. 500, 1000, 1500 and 2000
tex on physical and mechanical properties of kenaf yarn were evaluated.
The assessment on twist type, twist angle, yarn diameter, yarn structure,
fibre density, moisture content, water absorption and mechanical
properties were carried out on kenaf yarns. The yarn mechanical
properties were tested on the tensile strength, Young's Modulus
and elongation. It was found that, different linear density of yarn
exhibited different behavior of yarn properties. Higher linear density
yarn produced wider yarn diameter compared to lower linear density
yarn, resulting to higher fibre and moisture content yarn. Yarn
tensile strength has increased by 46% when linear density was changed
from 500 to 2000 tex due to higher amount of individual fibres.
However, for Young's Modulus, the values reduced as the yarn linear
density increased due to several factors including number of fibres
and moisture content of yarn.
Keywords: Linear density; moisture
content; twist angle; yarn
ABSTRAK
Pada masa ini, terdapat minat yang
semakin meningkat bagi penggunaan bahan tenun dalam pengeluaran komposit untuk
banyak aplikasi seperti aplikasi struktur, aplikasi bukan struktur, utiliti isi
rumah, bahagian untuk kereta, komponen aeroangkasa, lantai dan komposit laminat
balistik. Struktur dan sifat kain tenunan itu sangat penting kerana ia menentukan
sifat komposit tenunan. Ciri-ciri benang seperti ketumpatan linear, faktor
pintalan dan kekuatan boleh mempengaruhi kebanyakan sifat kain tenunan.
Kekuatan kain tenunan adalah salah satu ciri yang paling penting yang
menjadikannya unggul dalam aplikasi komposit akhir. Dalam kajian ini, kesan
ketumpatan linear iaitu 500, 1000, 1500 dan 2000 tex dinilai terhadap sifat
fizikal dan mekanikal benang kenaf. Penilaian daripada segi jenis pintalan,
sudut pintalan, diameter benang, struktur benang, ketumpatan serat, kandungan
lembapan, penyerapan air dan sifat mekanikal telah dijalankan pada benang
kenaf. Ciri-ciri mekanikal benang telah diuji pada kekuatan tegangan, modulus
Young dan pemanjangan. Kajian mendapati ketumpatan linear yang berbeza
menghasilkan sifat benang yang berbeza. Benang dengan ketumpatan linear yang
lebih tinggi menghasilkan diameter benang yang lebih luas berbanding benang
berketumpatan linear yang lebih rendah menghasilkan benang dengan kandungan
serat dan lembapan yang lebih tinggi. Kekuatan tegangan benang meningkat
sebanyak 46% apabila ketumpatan linear diubah daripada 500 hingga 2000 tex
disebabkan oleh jumlah gentian individu yang lebih tinggi. Walau bagaimanapun,
nilainya berkurangan bagi modulus Young kerana ketumpatan linear benang meningkat
disebabkan oleh beberapa faktor termasuk bilangan serat dan kandungan lembapan
benang.
Kata
kunci: Benang; kandungan lembapan; ketumpatan linear; sudut pintalan
RUJUKAN
Abdellaoui, H.,
Bensalah, H., Echaabi, J., Bouhfid, R. & Qaiss, A. 2015. Fabrication,
characterization and modelling of laminated composites based on woven jute
fibres reinforced epoxy resin. Materials and Design 68: 104-113.
Alavudeen, A., Rajini,
N., Karthikeyan, S., Thiruchitrambalam, M. & Venkateshwaren, N. 2015.
Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester
composites: Effect of woven fabric and random orientation. Materials and
Design 66: 246-257.
Azrin Hani Abdul, R.,
Roslan, A., Jaafar, M., Roslan, M.N. & Ariffin, S. 2011. Mechanical
properties evaluation of woven coir and kevlar reinforced epoxy composites. Advanced
Materials Research 277: 36-42.
Baghaei, B., Skrifvars,
M. & Berglin, L. 2015. Characterization of thermoplastic natural fibre
composites made from woven hybrid yarn prepregs with different weave pattern. Applied
Science and Manufacturing 76: 154-161.
Bodros, E. & Baley,
C. 2008. Study of the tensile properties of stinging nettle fibres (Urtica
dioica). Materials Letters 62(14): 2143-2145.
Chattopadhyay, R. 2008.
Design of apparel fabrics: Role of fibre, yarn and fabric parameters on its
functional attributes. Journal of Textile Engineering 54(6): 179-190.
Dalbehera, S. &
Acharya, S.K. 2015. Effect of cenosphere addition on erosive wear behaviour of
jute-glass reinforced composite using taguchi experimental design. Materials
Today: Proceedings 2(4-5): 2389-2398.
Duval, A., Bourmaud, A.,
Augier, L. & Baley, C. 2011. Influence of the sampling area of the stem on
the mechanical properties of hemp fibers. Materials Letters 65(4):
797-800.
Faruk, O., Bledzki,
A.K., Fink, H.P. & Sain, M. 2012. Biocomposites reinforced with natural
fibers: 2000- 2010. Progress in Polymer Science 37(11): 1552-1596.
Gabrijelcic, H.,
Cernosa, E. & Dimitrovski, K. 2008. Influence of weave and weft
characteristics on tensile properties of fabrics. Fibres and Textiles in
Eastern Europe 2(67): 45-51.
Goutianos, S., Peijs,
T., Nystrom, B. & Skrifvars, M. 2006. Development of flax fibre based
textile reinforcements for composite applications. Applied Composite
Materials 13(4): 199-215.
Hani, A., Rashid, A.,
Seang, C.T., Ahmad, R. & Mariatti, J.M. 2013. Impact and flexural
properties of imbalance plain woven coir and kenaf composite. Applied
Mechanics and Materials 271: 81-85.
Jawaid, M., Khalil, H.A.
& Bakar, A.A. 2011. Woven hybrid composites: Tensile and flexural
properties of oil palm-woven jute fibres based epoxy composites. Materials
Science and Engineering 528(15): 5190-5195.
Júnior, C.P., De
Carvalho, L.H., Fonseca, V.M., Monteiro, S.N. & d’Almeida, J.R.M. 2004.
Analysis of the tensile strength of polyester/hybrid ramie-cotton fabric
composites. Polymer Testing 23(2): 131-135.
Kadoğlu, H. 2006.
Determining fibre properties and linear density effect on cotton yarn hairiness
in ring spinning. Fibres and Textiles in Eastern Europe 3(57): 48-51.
Khan, G.A., Terano, M.,
Gafur, M.A. & Alam, M.S. 2016. Studies on the mechanical properties of
woven jute fabric reinforced poly (l-lactic acid) composites. Journal of
King Saud University-Engineering Sciences 28(1): 69-74.
Le Duigou, A., Deux,
J.M., Davies, P. & Baley, C. 2011. PLLA/ flax mat/balsa bio-sandwich
manufacture and mechanical properties. Applied Composite Materials 18(5):
421-438.
Liu, Q. & Hughes, M.
2008. The fracture behaviour and toughness of woven flax fibre reinforced epoxy
composites. Applied Science and Manufacturing 39(10): 1644-1652.
Madsen, B., Hoffmeyer,
P., Thomsen, A.B. & Lilholt, H. 2007. Hemp yarn reinforced composites-I.
Yarn characteristics. Applied Science and Manufacturing 38(10):
2194-2203.
Me, R.C., Ibrahim, R.
& Tahir, P.M. 2012. Natural based biocomposite material for prosthetic
socket fabrication. ALAM CIPTA, International Journal of Sustainable
Tropical Design Research and Practice 5(1): 27-34.
Mollanoori, M. &
Alamdar-Yazdi, A. 2012. Twist direction effect on the mechanical properties of
woven fabric. Fibres & Textiles in Eastern Europe 5(94): 48-55.
Mossello, A.A., Harun,
J., Shamsi, S.R.F., Resalati, H., Tahir, P.M., Ibrahim, R. & Mohmamed, A.Z.
2010. A review of literatures related to kenaf as a alternative for pulpwoods. Agricultural
Journal 5(3): 131-138.
Ochi, S. 2008.
Mechanical properties of kenaf fibers and kenaf/ PLA composites. Mechanics
of Materials 40(4-5): 446-452.
Oksman, K., Skrifvars,
M. & Selin, J.F. 2003. Natural fibres as reinforcement in polylactic acid
(PLA) composites. Composites Science and Technology 63(9): 1317-1324.
Pothan, L.A., Oommen, Z.
& Thomas, S. 2003. Dynamic mechanical analysis of banana fiber reinforced
polyester composites. Composites Science and Technology 63(2): 283-293.
Saiman, M.P.,
Wahab, B., Saidin, M. & Wahit, M.U. 2014. The effect of yarn linear density
on mechanical properties of plain woven kenaf reinforced unsaturated polyester
composite. Applied Mechanics and Materials 465: 962-966.
Sapuan, S.M., Leenie, A., Harimi, M. & Beng, Y.K. 2006.
Mechanical properties of woven banana fibre reinforced epoxy composites. Materials
and Design 27(8): 689-693.
Sapuan, S.M. &
Maleque, M.A. 2005. Design and fabrication of natural woven fabric reinforced
epoxy composite for household telephone stand. Materials and Design 26(1):
65-71.
Satyanarayana, K.G.,
Arizaga, G.G. & Wypych, F. 2009. Biodegradable composites based on
lignocellulosic fibers- An overview. Progress in Polymer Science 34(9):
982-1021.
Shah, D.U., Schubel,
P.J. & Clifford, M.J. 2013. Modelling the effect of yarn twist on the
tensile strength of unidirectional plant fibre yarn composites. Journal of
Composite Materials 47(4): 425-436.
Song, Y.S., Lee, J.T.,
Ji, D.S., Kim, M.W., Lee, S.H. & Youn, J.R. 2012. Viscoelastic and thermal
behavior of woven hemp fiber reinforced poly (lactic acid) composites. Engineering 43(3): 856-860.
Sulaiman, S., Mokhtar,
M.N., Naim, M.N., Baharuddin, A.S., Salleh, M.A.M. & Sulaiman, A. 2015.
Study on the preparation of cellulose nanofibre (CNF) from kenaf bast fibre for
enzyme immobilization application. Sains Malaysiana 44(11): 1541-1550.
Summerscales, J.,
Dissanayake, N., Virk, A. & Hall, W. 2010. A review of bast fibres and
their composites. Applied Science and Manufacturing 41(10): 1336-1344.
Yahaya, R., Sapuan,
S.M., Jawaid, M., Leman, Z. & Zainudin, E.S. 2015. Effect of layering
sequence and chemical treatment on the mechanical properties of woven
kenaf-aramid hybrid laminated composites. Materials and Design 67:
173-179.
*Pengarang untuk surat-menyurat; email: a.humaira.aisyah@gmail.com
|