Sains Malaysiana 47(8)(2018): 1883–1890
http://dx.doi.org/10.17576/jsm-2018-4708-29
A Review of Common Beam Hardening Correction
Methods for Industrial X-ray
Computed Tomography
(Ulasan Mengenai Kaedah Pembetulan Pengerasan
Alang bagi Tomografi X-ray Berkomputer Industri)
O.M.H. AHMED
& YUSHOU SONG*
College of Nuclear Science and Technology,
Harbin Engineering University, 145 Nantong Street, Harbin 150001, China
Diserahkan: 9 Disember 2017/Diterima: 5
April 2018
ABSTRACT
X-ray computed tomography (XCT)
became an important instrument for quality assurance in industry products as a
non-destructive testing tool for inspection, evaluation, analysis and
dimensional metrology. Thus, a high-quality image is required. Due to the
polychromatic nature of X-ray energy in XCT, this leads to errors in
attenuation coefficient which is generally known as beam hardening artifact.
This leads to a distortion or blurring-like cupping and streak in the
reconstruction images, where a significant decrease in imaging quality is
observed. In this paper, recent research publications regarding common
practical correction methods that were adopted to improve an imaging quality
have been discussed. It was observed from the discussion and evaluation, that a
problem behind beam hardening reduction for the multi-materials object,
especially in the absence of prior information about X-ray spectrum and
material characterizations would be a significant research contribution, if the
correction could be achieved without the need to perform forward projections
and multiple reconstructions.
Keywords: Beam hardening; cupping
artifact; images artifact
ABSTRAK
Tomografi x-ray berkomputer (XCT)
menjadi instrumen yang penting dalam penjaminan kualiti produk industri sebagai
alat ujian tak musnah bagi menjalankan pemeriksaan, penilaian, analisis dan
metrologi berdimensi. Oleh itu, imej yang berkualiti tinggi diperlukan.
Disebabkan oleh sifat tenaga x-ray XCT yang polikromatik, hal ini
boleh menyebabkan dalam pengecilan pekali yang dikenali sebagai artifak
pengerasan alang. Hal ini seterusnya menyebabkan lengkungan seperti erot atau
kabur dan jejalur pada pembinaan semula imej yang menyebabkan penurunan kualiti
yang signifikan pada imej yang dilihat. Kertas ini membincangkan mengenai
penerbitan yang mengkaji kaedah pembetulan praktikal yang digunakan untuk
meningkatkan kualiti pengimejan. Daripada perbincangan dan penilaian yang
dilakukan, masalah di sebalik pengurangan pengerasan alang bagi objek
multi-bahan terutamanya pada ketiadaan maklumat awal tentang spektrum X-ray dan
sifat bahan boleh menjadi sumbangan kajian yang sangat penting, iaitu sekiranya
pembetulan tersebut boleh dicapai tanpa perlu melakukan unjuran awal dan
pembinaan semula berganda.
Kata
kunci: Artifak imej; artifak lengkung; pengerasan alang
RUJUKAN
Arunmuthu, K., Ashish,
M., Saravanan, T., Philip, J., Rao, B.P.C. & Jayakumar, T. 2013. Simulation
of beam hardening in X-ray tomography and its correction using linearisation
and pre-filtering approaches. Insight: Non-Destructive Testing and Condition
Monitoring 55(10): 540-547.
Brabant, L., Pauwels,
E., Dierick, M., Van Loo, D., Boone, M.A. & Van Hoorebeke, L. 2012. A novel
beam hardening correction method requiring no prior knowledge, incorporated in
an iterative reconstruction algorithm. NDT and E International 51:
68-73.
Brooks, R.A. & Di
Chiro, G. 1976. Principles of computer assisted tomography (CAT) in
radiographic and radioisotopic imaging. Physics in Medicine and Biology 21(5):
689-732.
Cantatore, A. &
Müller, P. 2011. Introduction to Computed Tomography. DTU Mechanical
Engineering. Denmark: Kgs.Lyngby.
Carlsson, C.A. &
Carlsson, G.A. 1996. Basic Physics of X-Ray Imaging (2nd Ed). Linköping:
Linköping University.
Chen, S., Xi, X., Li,
L., Luo, L., Han, Yu., Wang, J. & Yan, B. 2017. A filter design method for
beam hardening correction in middle-energy x-ray computed tomography. Proceedings
Volume 10033, Eight International Conference on Digital Image Processing (ICDIP
2016). pp. 2-7.
Chu, R.Y.L. 1983. Radiological
imaging: The theory of image formation, detection, and processing.
Vol. 2, edited by Barrett, H.H. & Swindell, W. Medical
Physics 10(2): 262-263. doi: 10.1118/1.595250.
Cleland, M.R. &
Stichelbaut, F. 2013. Radiation processing with high-energy X-rays. Radiation
Physics and Chemistry 84: 91-99.
De Chiffre, L.,
Carmignato, S., Kruth, J., Schmitt, R. & Weckenmann, A. 2014. CIRP annals -
Manufacturing technology: Industrial applications of computed tomography. CIRP
Annals - Manufacturing Technology 63(2): 655-677.
Gao, H., Zhang, L.,
Chen, Z., Xing, Y. & Li, S. 2006. Beam hardening correction for
middle-energy industrial computerized tomography. IEEE Transactions on
Nuclear Science 53(5): 2796-2807.
Hammersberg, P. &
Mangard, M. 1998. Correction for beam hardening artefacts in computerised
tomography. Journal of X-Ray Science and Technology 8(1): 75-93.
Hampel, U. 2015. 6 -
X-ray computed tomography. In Industrial Tomography: Systems and
Applications, edited by Wang, M. Cambridge: Elsevier Ltd. pp. 175-196.
Hanna, R.D. &
Ketcham, R.A. 2017. X-ray computed tomography of planetary materials: A primer
and review of recent studies. Chemie Der Erde - Geochemistry 77(4):
547-572.
Herman, G.T. 1979.
Correction for beam hardening in computed tomography. Physics in Medicine
and Biology 24(1): 81-106.
Hounsfield, G.N. 1972.
A method of an apparatus for examination of a body by radiation
such as X- or gamma-radiation. 1283915, issued 1972. (patent).
Hussein, E.M.A. 2011. Computed
Radiation Imaging: Physics and Mathematics of Forward and Inverse Problems.
1st ed. Armsterdarm: Elsevier Inc.
Jennings, R.J. 1988. A
method for comparing beam-hardening filter materials for diagnostic radiology. Medical
Physics 15(4): 588-599.
Ketcham, R.A. &
Hanna, R.D. 2014. Computers & geosciences beam hardening correction for
x-ray computed tomography of heterogeneous natural materials. Computers and
Geosciences 67: 49-61.
Kimoto, N., Hayashi, H.,
Asahara, T., Mihara, Y., Kanazawa, Y., Yamakawa, T., Yamamoto, S., Yamasaki, M.
& Okada, M. 2017. Precise material identification method based on a photon
counting technique with correction of the beam hardening effect in x-ray
spectra. Applied Radiation and Isotopes 124: 16-26.
Kitazawa, S., Abe, Y. &
Sato, K. 2005. Simulations of MeV energy computed tomography. NDT & E
International 38(4): 275-282.
Knoll, G.F. 2010. Radiation
Detection and Measurement. 4th ed. Michigan: John Wiley & Sons, Inc.
Krumm, M.Ã., Kasperl, S.
& Franz, M. 2008. Reducing non-linear artifacts of multi-material objects
in industrial 3d computed tomography. NDT & E International 41(4):
242-251.
Lifton, J.J., Malcolm,
A.A. & Mcbride, J.W. 2013. The application of beam hardening correction for
industrial x-ray computed tomography. Proceedings: 5th International
Symposium on NDT in Aerospace.
Lifton, J.J. 2017.
Multi-material linearization beam hardening correction for computed tomography. Journal of X-Ray Science and Technology 25: 629-640.
Nalcioglu, O. & Lou,
R.Y. 1979. Post-reconstruction method for beam hardening in computerised
tomography. Physics in Medicine & Biology 24: 3300-3340.
Rajendran, K., Walsh,
M.F., de Ruiter, N.J.A., Chernoglazov, A.I., Panta, R.K., Butler, A.P.H.,
Butler, P.H., Bell, S.T., Anderson, N.G., Woodfield, T.B.F., Tredinnick, S.J.,
Healy, J.L., Baterman, C.J., Aamir, R., Doesburg, R.M.N., Renaud, P.F., Gieseg,
S.P., Smithies, D.J., Mohr, J.L., Mandalika, V.B.H., Opie, A.M.T., Cook, N.J.,
Ronaldson, J.P., Nik, S.J., Atharifard, A., Clyne, M., Bones, P.J., Barneck,
C., Grasset, R., Schleich, N. & Bilinghurst, M. 2014. Reducing beam
hardening effects and metal artefacts in spectral CT using Medipix3RX. Journal
of Instrumentation 9(3): P03015-P03015.
Ramakrishna, K.,
Muralidhar, K. & Munshi, P. 2006. Beam-hardening in simulated X-ray
tomography. NDT and E International 39(6): 449-457.
Rasoulpour, N.,
Kamali-Asl, A. & Hemmati, H. 2015. A new approach for beam hardening
correction based on the local spectrum distributions. Nuclear Instruments
and Methods in Physics Research, Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 794: 177-184.
Sahebnasagh, A.,
Adinehvand, K. & Azadbakht, B. 2012. Simulation of beam hardening in
industrial CT with X-ray and monoenergetic source by Monte Carlo Code. Journal
of Basic and Applied Scientific Research 2(5): 5255-5259.
Segal, E., Ellingson,
W.A., Segal, Y. & Zmora, I. 1987. A linearization beam-hardening correction
method for X-Ray computed tomographic imaging of structural ceramics. Review
of Progress in Quantitative Nondestructive Evaluation 0: 411-419.
Tan, Y., Kiekens, K.,
Welkenhuyzen, F., Angel, J., De Chiffre, L., Kruth, J. & Dewulf, W. 2014.
Simulation-aided investigation of beam hardening induced errors in CT
dimensional metrology. Measurement Science and Technology 25(6): 64014.
Thomsen, M., Knudsen, E.B., Willendrup,
P.K., Bech, M., Willner, M., Pfeiffer, F., Poulsen, M., Lefmann, K. &
Feidenhans’l, R. 2015. Prediction of beam hardening artefacts in computed
tomography using Monte Carlo simulations. Nuclear Instruments and Methods in
Physics Research Section B: Beam Interactions with Materials and Atoms 342:
314-320.
Van de Casteele, E., Van Dyck, D., Sijbers,
J. & Raman, E. 2002. An energy-based beam hardening model in tomography. Physics
in Medicine and Biology 47(23): 4181-4190.
Van de Casteele, E., Van Dyck, D.,
Sijbers, J. & Raman, E. 2004. A model-based correction method for beam
hardening artefacts in x-ray microtomography. Journal of X-Ray Science and
Technology 12(1): 43-57.
Wang, M. 2015. Industrial Tomography:
Systems and Applications. Armsterdam: Elsevier Ltd.
Yan, C.H., Whalen, R.T., Beaupré, G.S.,
Yen, S.Y. & Napel, S. 2000. Reconstruction algorithm for polychromatic CT
imaging: Application to beam hardening correction. IEEE Transactions on
Medical Imaging 19(1): 1-11.
Yang, Q., Elter, M. & Scherl, H.
2012. Accelerated quantitative multi-material beam hardening correction (BHC)
in cone-beam CT. European Congress of Radiology DOI: 10.1594/
ecr2012/C-2161.
Zhou, R-F., Wang, J. & Chen, W. 2009.
X-ray beam hardening correction for measuring density in linear accelerator
industrial computed tomography. Chinese Physics C 33(7): 599.
doi:10.1088/1674-1137/33/7/018.
*Pengarang untuk
surat-menyurat; email: songyushou80@163.com