Sains Malaysiana 48(5)(2019):
1065–1073
http://dx.doi.org/10.17576/jsm-2019-4805-15
In vitro Effects of Various Antimicrobials
Alone and in Combinations against Imipenem
Resistant Pseudomonas aeruginosa
(Kesan In vitro
Pelbagai Antimikrob
Sendiri dan Gabungan terhadap
Rintangan-Imipenem Pseudomonas aeruginosa)
WANUTSANUN TUNYAPANIT1*,
PORNPIMOL
PRUEKPRASERT1,
KAMOLWISH
LAOPRASOPWATTANA1
& SUREERAT CHELAE2
1Department of Pediatrics, Faculty
of Medicine, Prince of Songkla University,
Hat Yai, Songkhla 90110, Thailand
2Department of Pathology, Faculty of
Medicine, Prince of Songkla University,
Hat Yai, Songkhla 90110, Thailand
Diserahkan: 8 Oktober 2018/Diterima: 21 Februari 2019
ABSTRACT
Imipenem-resistant
Pseudomonas aeruginosa (IRPA) infection is a serious problem
in hospitals. Combination therapy is an alternative treatment
for this infection. In this study, the in vitro activities
of amikacin, aztreonam, ceftazidime, ciprofloxacin,
colistin, imipenem,
and piperacillin/tazobactam alone and
in various combinations were determined by E-test for 38 imipenem-resistant
P. aeruginosa isolates obtained from a Thai hospital. Of
the 38 IRPA
isolates, 9 (24%) were low-level IRPA (defined
as MICs of imipenem 8-32 μg/mL) and 29 (76%) were high-level IRPA
(defined as MICs of imipenem
>32 μg/mL). The
high-level IRPA
isolates were susceptible to colistin
(90%), piperacillin/tazobactam (72%),
and amikacin (52%). The low-level IRPA isolates were susceptible to colistin (100%) and all other antimicrobials tested (78%-89%).
The MIC50 value of colistin
against both the high-level and low-level IRPA isolates
was 1.5 μg/mL.
Of all the antimicrobial combinations tested, ceftazidime
plus ciprofloxacin displayed the highest percentages of synergistic
effects against IRPA
isolates (26%, 10/38 isolates) and a high percentages
of synergistic effects against high-level IRPA isolates (21, 6/29 isolates),
with no antagonistic effects detected. Colistin
had the greatest activity against most IRPA isolates among all of the
antimicrobials tested, while ceftazidime
plus ciprofloxacin showed promise in treating infections caused
by IRPA isolates
including high-level IRPAs.
Keywords: Etest;
imipenem resistant; Pseudomonas
aeruginosa; synergy
ABSTRAK
Jangkitan rintangan-imipenem Pseudomonas aeruginosa (IRPA)
merupakan masalah
yang serius di hospital. Terapi gabungan adalah rawatan alternatif bagi jangkitan ini. Dalam kajian
ini, aktiviti
in vitro amikasin, aztreonam, ceftazidime, ciprofloxacin, colistin,
imipenem dan
piperacillin/tazobactam semata-mata serta pelbagai gabungan ditentukan oleh ujian E-38 rintangan-imipenem pencilan P.
aeruginosa yang diperoleh
daripada sebuah hospital di Thailand.
Dalam pencilan
38 IRPA,
9 (24%) ialah IRPA tahap
rendah (ditakrifkan
sebagai MICs imipenem
8-32 μg/mL) dan
29 (76%) IRPA tahap tinggi
(ditakrifkan sebagai
MICs
imipenem > 32 μg/mL).
Pencilan IRPA tahap
tinggi telah
menyebabkan ia terdedah kepada colistin (90%), piperacillin/tazobactam
(72%) dan amikasin
(52%). Pencilan IRPA tahap
rendah rentan
kepada colistin (100%) dan semua ujian
antimikrob (78% - 89%). Nilai
colistin MIC50 terhadap
kedua-dua pencilan
di peringkat tinggi dan IRPA tahap
rendah adalah 1.5 μg/mL. Daripada semua gabungan antimikrob
yang diuji, ceftazidime dan ciprofloxacin menunjukkan peratusan tertinggi kesan bersinergisma terhadap pencilan IRPA (26%,
pencilan 10/38) dan
tinggi peratusan daripada kesan bersinergisma terhadap tahap tinggi IRPA terasing (21%, pencilan 6/29) dengan tiada kesan
berantagonis dikesan.
Colistin menunjukkan aktiviti terbesar berbanding kebanyakan pencilan IRPA antara semua antimikrob yang diuji, manakala ceftazidime dan ciprofloxacin menunjukkan keupayaan dalam merawat jangkitan
yang disebabkan oleh
pencilan IRPA termasuk
IRPAs
tahap tinggi.
Kata kunci: Etest;
Pseudomonas
aeruginosa; rintangan imipenem;
sinergi
RUJUKAN
Amer, W.H. & Abd-Elmonsef, M.M.E. 2016. Effective in vitro synergy
of piperacillin/tazobactam plus either
netilmicin or aztreonam against
metallo-b-lactamase-producing Pseudomonas aeruginosa.
Univers. J. Microbiol.
Res. 4(3): 59-65.
Altoparlak, U., Aktas, F., Celebi, D., Ozkurt, Z. & Akcay, M.N. 2005.
Prevalence of metallo-b-lactamase among
Pseudomonas aeruginosa and Acinetobacter
baumannii isolated from burn wounds and in vitro activities
of antibiotic combinations against these isolates. Burns 31:
707-710.
Breidenstein, E.B.M., Fuente-Nunez,
C.D.L. & Hancock, R.E.W. 2011. Pseudomonas aeruginosa:
All roads lead to resistance. Trends Microbiol.
19(8): 419-426.
Clinical and Laboratory
Standards Institute. 2014. Performance standards for antimicrobial
susceptibility testing. Twenty-fourth informational supplement.
M100-S24: Wayne.
Dalfino, L., Puntillo, F.,
Ondok, M.J., Mosca,
A., Monno, R., Coppolecchia,
S., Spada, M.L., Bruno, F. & Brienza,
N. 2015. Colistin-associated acute kidney
injury in severely III patients: A step toward a better renal
care? A prospective cohort study. Clin.
Infect Dis. 61: 1771-1777.
Dundar, D. & Otkun, M. 2010. In vitro efficacy of synergistic antibiotic
combinations in multidrug resistant Pseudomonas aeruginosa
strains. Yonsei Med. J.
51(1): 111-116.
Faizah, M.H., Anisah, N., Yusof, S., Noraina, A.R. & Adibah, M.R.
2017. Molecular detection of bacterial endosymbionts in Acanthamoeba
spp.: A preliminary study. Med & Health Dec. 12(2):
286-292.
Farzana, A. & Shamsuzzaman, S.M. 2015. In vitro efficacy of synergistic
antibiotic combinations in imipenem
resistant Pseudomonas aeruginosa strains. Bangladesh
J. Med. Microbiol. 9(1): 3-8.
Fujimura, S., Takane, H., Nakano, Y. & Watanabe, A. 2009. In vitro
synergy studies based on tazobactam/piperacillin
against clinical isolates of metallo-b-lactamase-producing
Pseudomonas aeruginosa. J. Antimicrob.
Chemother. 10: 1-2.
Gerceker, A.A. & Gurler, B. 1995. In vitro activities of various antibiotics,
alone and in combination with amikacin against Pseudomonas
aeruginosa. J. Antimicrob. Chemother.
36: 707-711.
Giligan, P.H. 1995. Pseudomonas
and Burlkholder. In Manual
of Clinical Microbiology, 6th ed., edited by Murray, P.R.,
Baron, E.J., Pfaller, M.A., Tenover, F.C. &
Yolken, R.H. Washington, DC: ASM Press.
pp. 509-519.
Goli, H.R., Nahaei, M.R., Rezaee, M.A., Hasani, A., Kafil, H.S. & Aghazadeh, M. 2016. Emergence of colistin
resistant Pseudomonas aeruginosa at Tabriz hospital, Iran.
Iran J. Microbiol. 8(1): 62-69.
Golle, A., Janezic, S. & Rupnik, M. 2017.
Low overlap between carbapenem resistant
Pseudomonas aeruginosa genotypes isolated from hospitalized
patients and wastewater treatment plants. PloS
ONE 12(10): e0186736.
Harris, A.D., Perencevich, E., Roghmann, M.C.,
Morris, G., Kaye, K.S. & Johnson, J.A. 2002. Risk factors
for piperacillin-tazobactam-resistant Pseudomonas aeruginosa among hospitalized
patients. Antimicrob. Agents
Chemother. 46(3): 854-858.
Kang, C.I. &
Song, J.H. 2013. Antimicrobial resistance in Asia: Current epidemiology
and clinical implications. Infect. Chemother.
45(1): 22-31.
Kanj, S.S. & Kanafani, Z.A. 2011. Current concepts in antimicrobial therapy
against resistant gram-negative organisms: Extended-spectrum β-lactamase-producing
Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae,
and multidrug-resistant Pseudomonas aeruginosa. Mayo.
Clin. Proc. 86(3): 250-259.
Laupland, K.B., Parkins, M.D., Church, D.L., Gregson, D.B., Louie, T.J., Conly,
J.M., Elsayed, S. & Pitout,
J.D.D. 2005. Population-based epidemiological study of infections
caused by carbapenem-resistant Pseudomonas aeruginosa in the
Calgary health region: Importance of metallo-β-lactamase
(MBL)-producing strains. J. Infect. Dis. 192(1): 1606-1612.
Leung, C.H., Wang,
N.Y., Liu, C.P., Weng, L.C., Hsieh,
F.C. & Lee, C.M. 2008. Antimicrobial therapy and control of
multidrug-resistant Pseudomonas aeruginosa bacteremia in
a teaching hospital in Taiwan. J. Microbiol. Immunol. Infect. 41:
491-498.
Lister, P.D., Wolter, D.J. & Hanson, N.D. 2009. Antibacterial-resistant
Pseudomonas aeruginosa: Clinical impact and complex regulation
of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev.
22(4): 582-610.
Memar, M.Y., Pormehrali, R., Alizadeh, N., Ghotaslou, R. & Baghi, H.B.
2016. Colistin, an option for treatment
of multiple drug resistant Pseudomonas aeruginosa. Physiol.
Pharmacol. 20: 130-136.
Moore, N.M. &
Flaws, M.L. 2011. Treatment strategies and recommendations for
Pseudomonas aeruginosa infections. Clin.
Lab. Sci. 24(1): 52-56.
Nazli, E., Zer, Y. & Eksi, F. 2015. In
vitro efficacy of various antibiotic combinations against
Pseudomonas aeruginosa isolates. J. Int. Med. Res. 43(2):
217-225.
Pai, H., Kim, J.W.,
Kim, J., Lee, J.H., Choe, K.W. &
Gotoh, N. 2001. Carbapenem resistance
mechanisms in Pseudomonas aeruginosa clinical isolates.
Antimicrob. Agents Chemother.
45(2): 480-484.
Pankey, G.A. & Ashcraft,
D.S. 2005. In vitro synergy of ciprofloxacin and gatifloxacin against ciprofloxacin-resistant Pseudomonas
aeruginosa. Antimicrob.
Agents Chemother. 49(7): 2959-2964.
Patzer, J.A. & Dzierzanowska, D. 2007. Increase of imipenem
resistance among Pseudomonas aeruginosa isolates from a
Polish paediatric hospital (1993-2002). Int. J. Antimicrob. Agents 29: 153-158.
Sader, H.S., Huynh, H.K.
& Jones, R.N. 2003. Contemporary in vitro synergy rates
for aztreonam combined with newer fluoroquinolones and b-lactams
tested against gram-negative bacilli. Diagn.
Microbiol. Infect. Dis. 47: 547-550.
Sanal, L., Sen, S., Cesur, S. & Yilmaz, N. 2016. In vitro synergistic
efficacy of various antibiotic combinations against multi-drug-resistant
Pseudomonas aeruginosa isolates obtained from patients
in intensive care units. Acta Medica. Mediterranea. 32: 1041-1046.
Soboh, F., Khoury, A.E., Zamboni, A.C., Davidson, D. & Mittelman, M.W. 1995. Effects of ciprofloxacin and protamine
sulfate combinations against catheter associated Pseudomonas
aeruginosa biofilms. Antimicrob.
Agents Chemother. 39(6): 1281-1286.
Song, M., Dilworth, T.J., Munson,
E., Davis, J. & Elshaboury, R.H.
2017. Results of a local combination therapy antibiogram
for Pseudomonas aeruginosa isolates: Is double worth the
trouble? Ther. Adv. Infectious
Dis. 4(6): 165-170.
Song, W., Woo, H.J., Kim, J.S. &
Lee, K.M. 2003. In vitro activity of b-lactams in combination
with other antimicrobial agents against resistant strains of Pseudomonas
aeruginosa. Int. J. Antimicrob.
Agents 21: 8-12.
Sueke, H., Kaye, S.B., Neal, T., Hall,
A., Tuft, S. & Parry, C.M. 2010. An in vitro investigation
of synergy or antagonism between antimicrobial combinations against
isolates from bacterial keratitis. Invest. Ophthalmol.
Vis. Sci. 51(8): 4151- 4155.
Tam, V.H., Chang, K.T., Abdelraouf, K., Brioso, C.G., Ameka, M., McCaskey, L.A., Weston, J.S., Caeiro, J.P. & Garey, K.W. 2010.
Prevalence, resistance mechanisms, and susceptibility of multidrug-resistant
bloodstream isolates of Pseudomonas aeruginosa. Antimicrob. Agents Chemother.
54(3): 1160- 1164.
Tausk, F., Evans, M.E., Patterson, L.S.,
Federspiel, C.F. & Stratton, C.W.
1985. Imipenem-induced resistance to antipseudomonal b-lactams in
Pseudomonas aeruginosa. Antimicrob.
Agents Chemother. 28(1): 41-45.
Tellis, R.C., Vidyasagar,
S. & Moosabba, M.S. 2016. Activity
of antibiotic combinations against multidrug resistant Pseudomonas
aeruginosa: A study from South India. Int. J. Microbiol.
Allied Sci. 2(4): 27-34.
Tolera, M., Abate, D., Dheresa, M. & Marami, D. 2018.
Bacterial nosocomial infections and antimicrobial susceptibility
pattern among patients admitted at Hiwot
Fana Specialized University Hospital,
Eastern Ethiopia. Adv. Med. doi:10.1155/2018/2127814.
Vidaillac, C., Benichou,
L. & Duval, R.E. 2012. In vitro synergy of colistin
combinations against colistin-resistant
Acinetobacter baumannii,
Pseudomonas aeruginosa, and Klebsiella
pneumoniae isolates. Antimicrob.
Agents Chemother. 56(9): 4856-4861.
White, R.L., Burgess, D.S., Manduru, M. & Bosso, J.A. 1996.
Comparison of three different in vitro methods of detecting
synergy: Time-kill, checkerboard, and E test. Antimicrob.
Agents Chemother. 40(8): 1914-1918.
Wu, H., Moser, C., Wang, H.Z., Hoiby, N. & Song, Z.J. 2015. Strategies for combating
bacterial biofilm infections. Int. J. Oral Sci. 7: 1-7.
Yamaki, K.I., Tanaka, T., Takagi, K. &
Ohta, M. 1998. Effects of aztreonam
in combination with antipseudomonal antibiotics against Pseudomonas
aeruginosa isolated from patients with chronic or recurrent
lower respiratory tract infection. J. Infect. Chemother.
4: 50-55.
Yasmin, F., Akhtar, N. & Hameed,
A. 2013. In vitro synergistic effect of ciprofloxacin with
aminoglycosides against multidrug resistant-Pseudomonas aeruginosa.
Pak. J. Pharm. Sci. 26(5): 1041-1044.
*Pengarang
untuk surat-menyurat;
email: wanutsanun.t@psu.ac.th