Sains Malaysiana 49(11)(2020): 2667-2677
http://dx.doi.org/10.17576/jsm-2020-4911-06
Design,
Synthesis and Biological Evaluation of Aminoalkylated Chalcones as Antimalarial
Agent
(Reka
Bentuk, Sintesis dan Penilaian Biologi ke atas Aminoteralkil Kalkon sebagai
Agen Antimalaria)
JUFRIZAL
SYAHRI1*, HASMALINA NASUTION1, BETA ACHROMI NUROHMAH2,
BAMBANG PURWONO2, EMMY YUANITA3, NUR HANIS ZAKARIA4 &
NURUL IZZATY HASSAN4
1Department
of Chemistry, Universitas Muhammadiyah Riau, Jalan Tuanku Tambusai Ujung Nomor
1, Pekanbaru, Indonesia
2Department
of Chemistry, Universitas Gadjah Mada, Jalan Kaliurang Sekip Utara Bulaksumur
21, 55281, Yogyakarta, Indonesia
3Department
of Chemistry, Universitas Mataram, Jalan Majapahit 62A, Mataram, Indonesia
4Department
of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan:
10 April 2020/Diterima: 28 Mei 2020
Abstract
Aminoalkylated chalcone compounds (4a-4c) have been designed
using Quantitative Structure-Activity Relationship (QSAR) analysis, synthesized
and evaluated for theirin
vitro antimalarial activity. The best QSAR model obtained was log IC50 = 705.132 (qC7) - 65.573 (qC3) - 24.845 (qC4) - 4.634 (qC13) - 220.479 and
statistical analysis showed R2 of 0.937, suggesting that the QSAR
model was able to predict the
actual antimalarial activity by 93.7% accuracy. The addition of secondary
amines to the chalcone compounds was successfully carried out using the Mannich reaction, which was confirmed by spectroscopic analysis. The in vitro antimalarial activity of the synthesized compounds were screened against
the 3D7 strain of Plasmodium falciparum (CQ
sensitive).
All of the
compounds exhibited strong activity with IC50 values ranging from
0.54 ± 0.649 to 1.12 ± 0.369 µM. The
molecular docking studies investigated
interactions of the prepared compounds to the binding site of
wild-type Plasmodium falciparum dihydrofolate
reductase-thymidylate synthase (Pf-DHFR-TS) (PDB ID: IJ3I) and quadruple mutant Pf-DHFR-TS (PDB
ID: IJ3K). Some hydrogen bond and π – π interactions were observed
with the side chain of Ala16, Asp54, Cys15, Leu164, Tyr170, and Met55 in both
the wild and mutant Pf-DHFR types. It
has also been found that all the tested compounds
were obeyed the Lipinski’s rule. This
study proposed that compound 4b can be
developed as the new lead of
the antimalarial agent.
Keywords:
Antimalarial; chalcone; Mannich reaction; molecular docking; QSAR
Abstrak
Sebatian
aminoteralkil kalkon (4a-4c)
telah direka bentuk menggunakan
analisis Hubungan Struktur-Aktiviti Kuantitatif (QSAR) telah disintesis dan dinilai untuk aktiviti antimalaria secara in
vitro. Model QSAR terbaik yang diperoleh adalah log IC50 = 705.132
(qC7)-65.573 (qC3)-24.845 (qC4)-4.634 (qC13)-220.479 dan analisis statistik
menunjukkan R2 sebanyak 0.937, seterusnya mencadangkan bahawa model
QSAR ini berupaya untuk meramalkan aktiviti antimalaria sebenar dengan
ketepatan 93.7%. Penambahan amina sekunder telah dijalankan menggunakan tindak
balas Mannich dan disahkan melalui analisis spektroskopi. Kesemua sebatian disaring menentang strain
Klorokuina-sensitif (3D7) Plasmodium
falciparum. Semua sebatian menunjukkan aktiviti baik dengan nilai IC50 antara 0.54 ± 0.649 sehingga 1.12 ± 0.369 μM. Interaksi sebatian ini juga
dikaji melalui kajian dok pada tapak pengikatan protein jenis liar Pf-DHFR-TS
(PDB ID: IJ3I) dan mutan Pf-DHFR-TS (PDB ID: IJ3K). Ikatan hidrogen dan
interaksi π-π sebatian dengan rantai sisi asid amino Ala16, Asp54,
Cys15, Leu164, Tyr170 dan Met55 jelas diperhatikan pada kedua-dua protein tersebut. Sebatian yang dikaji
ini juga didapati mematuhi peraturan Lipinski. Potensi aktiviti antimalaria
yang ditunjukkan oleh
sebatian 4b mampu dibangunkan sebagai sebatian utama.
Kata
kunci: Antimalaria; kajian dok; kalkon; QSAR; tindak balas Mannich
RUJUKAN
Ashley,
E.A., Dhorda, M., Fairhurst, R.M., Amaratunga, C., Lim, P., Suon, S., Sreng,
S., Anderson, J.M., Mao, S., Sam, B., Sopha, C., Chuor, C.M., Nguon, C.,
Sovannaroth, S., Pukrittayakamee, S., Jittamala, P., Chotivanich, K.,
Chutasmit, K., Suchatsoonthorn, C., Runcharoen, R., Hien, T.T., Thuy-Nhien,
N.T., Thanh, N.V., Phu, N.H., Htut, Y., Han, K.T., Aye, K.H., Mokuolu, O.A.,
Olaosebikan, R.R., Folaranmi, O.O., Mayxay, M., Khanthavong, M., Hongvanthong,
B., Newton, P.N., Onyamboko, M.A., Fanello, C.I., Tshefu, A.K., Mishra, N.,
Valecha, N., Phyo, A.P., Nosten, F., Yi, P., Tripura, R., Borrmann, S.,
Bashraheil, M., Peshu, J., Faiz, M.A., Ghose, A., Hossain, M.A., Samad, R.,
Rahman, M.R., Hasan, M.M., Islam, A., Miotto, O., Amato, R., Maclnnis, B.,
Stalker, J., Kwiatkowski, D.P., Bozdech, Z., Jeeyapant, A., Cheah, P.Y.,
Sakulthaew, T., Chalk, J., Intharabut, B., Silamut, K., Lee, S.J., Vihokhern, B.,
Kunasol, C., Imwong, M., Tarning, J., Taylor, W.J., Yeung, S., Woodrow, C.J.,
Flegg, JA, Das, D., Smith, J., Venkatesan, M., Plowe, C.V., Stepniewska, K.,
Guerin, P.J., Dondorp, A.M., Day, N.P. & White, N.J. 2014. Spread of
artemisinin resistance in Plasmodium
falciparum malaria. The New England
Journal of Medicine 371(5): 411-423.
Batista,
R., de Jesus Silva Júnior, A. & de Oliveira, A.B. 2009. Plant-derived
antimalarial agents: New leads and efficient phytomedicines. part II.
non-alkaloidal natural products. Molecules 14(8): 3037-3072.
Bhasin,
V.K. & Nair, L. 2003. ACT now-with
caution-for malaria treatments. The Lancet
Infectious Diseases 3(10): 609.
Cáceres-Castillo,
D., Carballo, R.M., Quijano-Quiñones, R., Mirón-López, G., Graniel-Sabido, M.,
Moo-Puc, R.E. & Mena-Rejón, G.J. 2020. Synthesis, in vitro antigiardial activity, SAR analysis and docking study of substituted chalcones. Medicinal Chemistry Research 29(3): 431-441.
Chen,
M., Theander, T.G., Christensen, S.B., Hviid, L., Zhai, L. & Kharazmi, A.
1994. Licochalcone A, a new antimalarial agent, inhibits in vitro growth
of the human malaria parasite Plasmodium falciparum and protects mice
from P. yoelii infection. Antimicrobial Agents and Chemotherapy 38(7): 1470-1475.
Cui, L., Wang, Z., Miao, J., Miao, M., Chandra, R.,
Jiang, H., Su, X.Z. & Cui, L. 2012.
Mechanisms of in vitro resistance to dihydroartemisinin in Plasmodium
falciparum. Molecular Microbiology 86(1): 111-128.
Dan,
W. & Dai, J. 2020. Recent developments of chalcones as potential antibacterial
agents in medicinal chemistry. European Journal of Medicinal Chemistry 187: 111980.
Elkhalifa,
D., Siddique, A.B., Qusa, M., Cyprian, F.S., El Sayed, K., Alali, F., Al
Moustafa, A.E. & Khalil, A. 2020. Design, synthesis, and validation of
novel nitrogen-based chalcone analogs against triple negative breast cancer. European
Journal of Medicinal Chemistry 187: 111954.
Frimayanti,
N., Yam, M.L., Lee, H.B., Othman, R., Zain, S.M. & Rahman, N.A. 2011.
Validation of quantitative structure-activity relationship (QSAR) model for
photosensitizer activity prediction. International Journal of Molecular
Sciences 12(12): 8626-8644.
Golbraikh,
A., Shen, M., Xiao, Z., Xiao, Y.D., Lee, K.H. & Tropsha, A. 2003. Rational
selection of training and test sets for the development of validated QSAR
models. Journal of Computer-Aided Molecular Design 17(2-4): 241-253.
Jain,
S.V., Ghate, M., Bhadoriya, K.S., Bari, S.B., Chaudhari, A. & Borse, J.S.
2012. 2D, 3D-QSAR and docking studies of 1, 2, 3-thiadiazole thioacetanilides analogues
as potent HIV-1 non-nucleoside reverse transcriptase inhibitors. Organic and
Medicinal Chemistry Letters 2(1): 22.
Jayaram,
B., Singh, T., Mukherjee, G., Mathur, A., Shekhar, S. & Shekhar, V. 2012.
Sanjeevini: A freely accessible web-server for target
directed lead molecule discovery. BMC Bioinformatics 13: S7.
Jyoti,
G.R., Kumar, Y., Cheema, H.S., Kapkoti, D.S., Darokar, M.P., Khan, F. &
Bhakuni, R.S. 2019. Synthesis, molecular modelling studies of indolyl chalcone
derivatives and their antimalarial activity evaluation. Natural Product
ResearchDOI: 10.1080/14786419.2019.1696788T.
Kalita,
J., Chetia, D. & Rudrapal, M. 2019. Molecular docking, dug-likeness studies
and ADMET prediction of quinoline imines for antimalarial activity. Journal
of Medicinal Chemistry and Drug Design 2(1): 1-7.
Khan,
S.A., Asiri, A.M., Al-Ghamdi, N.S.M., Asad, M., Zayed, M.E., Elroby, S.A.,
Aqlan, F.M., Wani, M.Y. & Sharma, K. 2019. Microwave assisted synthesis of
chalcone and its polycyclic heterocyclic analogues as promising antibacterial
agents: in vitro, in silico and DFT studies. Journal of Molecular Structure 1190: 77-85.
Lipinski,
C.A., Lombardo, F., Dominy, B.W. & Feeney, P.J. 1997. Experimental and
computational approaches to estimate solubility and permeability in drug
discovery and development settings. Advanced Drug Delivery Reviews 23(1-3): 3-25.
Modak,
V.P., Pathak, H., Thayer, M., Singer, S.J. & Wyslouzil, B.E. 2013.
Experimental evidence for surface freezing in supercooled n-alkane
nanodroplets. Physical Chemistry Chemical Physics 15(18): 6783-6795.
Motta,
L.F. & Almeida, W.P. 2011. Quantitative structure-activity relationships
(QSAR) of a series of ketone derivatives as anti-Candida albicans. International
Journal of Drug Discovery 3(2): 100-117.
Quaglio,
D., Zhdanovskaya, N., Tobajas, G., Cuartas, V., Balducci, S., Christodoulou,
M.S., Fabrizi, G., Gargantilla, M., Priego, E.M., Carmona Pestaña, A.
& Passarella, D. 2019. Chalcones and chalcone-mimetic derivatives as Notch
inhibitors in a model of T-cell acute lymphoblastic leukemia. ACS Medicinal
Chemistry Letters 10(4): 639-643.
Rammohan,
A., Bhaskar, B.V., Venkateswarlu, N., Gu, W. & Zyryanov, G.V. 2020. Design,
synthesis, docking and biological evaluation of chalcones as promising
antidiabetic agents. Bioorganic Chemistry 95: 103527.
Rieckmann,
K.H., Campbell, G.H., Sax, L.J. & Ema, J.E. 1978. Drug sensitivity of Plasmodium falciparum: an in-vitro microtechnique. The Lancet 311(8054): 22-23.
Shin,
J., Jang, M.G., Park, J.C., Do Koo, Y., Lee, J.Y., Park, K.S., Chung, S.S.
& Park, K. 2018. Antidiabetic effects of trihydroxychalcone derivatives via
activation of AMP-activated protein kinase. Journal of Industrial and
Engineering Chemistry 60: 177-184.
Sibley,
C.H. 2015. Understanding artemisinin resistance. Science 347(6220):
373-374.
Suwito,
H., Jumina Mustofa, Pudjiastuti, P., Fanani, M.Z., Kimata-Ariga, Y., Katahira,
R., Kawakami, T., Fujiwara, T., Hase, T., Sirat, H.M. & Puspaningsih,
N.N.T. 2014. Design and synthesis of chalcone derivatives as inhibitors of the
ferredoxin - ferredoxin-NADP+ reductase interaction of Plasmodium falciparum:
Pursuing new antimalarial agents. Molecules 19(12): 21473-21488.
Syahri,
J., Yuanita, E., Nurohmah, B.A., Armunanto, R. & Purwono, B. 2017a. Chalcone
analogue as potent anti-malarial compounds against Plasmodium falciparum: Synthesis, biological evaluation, and
docking simulation study. Asian Pacific Journal of Tropical Biomedicine 7(8):
675-679.
Syahri,
J., Rullah, K., Armunanto, R., Yuanita, E., Nurohmah, B.A., Aluwi, M.F.F.M.,
Wai, L.K. & Purwono, B. 2017b. Synthesis, biological evaluation, QSAR analysis,
and molecular docking of chalcone derivatives for antimalarial activity. Asian Pacific Journal of Tropical Disease 7(1): 8-13.
Syahri,
J., Purwono, B. & Armunanto, R. 2016. Design of new potential antimalaria
compound based on QSAR analysis of chalcone derivatives. International
Journal of Pharmaceutical Sciences Review and Research 36(2): 71-76.
Triglia, T., Thompson, J., Caruana, S.R., Delorenzi, M.,
Speed, T. & Cowman, A.F. 2001. Identification of proteins from Plasmodium falciparumthat are homologous to reticulocyte binding proteins in Plasmodium vivax. Infection and Immunity 69(2): 1084-1092.
Tuncel,
S., Trivella, A., Atilla, D., Bennis, K., Savoie, H., Albrieux, F., Delort, L.,
Billard, H., Dubois, V., Ahsen, V. & Caldefie-Chézet, F. 2013.
Assessing the dual activity of a chalcone-phthalocyanine
conjugate: Design, synthesis, and antivascular and photodynamic properties. Molecular
Pharmaceutics 10(10): 3706-3716.
Ur-Rashid,
H., Xu, Y., Ahmad, N., Muhammad, Y. & Wang, L. 2019. Promising
anti-inflammatory effects of chalcones via inhibition of cyclooxygenase,
prostaglandin E2, inducible NO synthase and nuclear factor κB activities. Bioorganic
Chemistry 87: 335-365.
Vinoth,
R., Rangarajan, T.M., Singh, R.P. & Singh, M. 2019. Synthesis of novel
chalcones through palladium-catalyzed CO cross-coupling reaction of
bromo-chalcones with ethyl acetohydroxamate and their antiplasmodial evaluation
against Plasmodium falcipuram in vitro. Bioorganic Chemistry 86: 631-640.
Wang,
J., Huang, L., Cheng, C., Li, G., Xie, J., Shen, M., Chen, Q., Li, W., He, W.,
Qiu, P. & Wu, J. 2019a. Design, synthesis and biological evaluation of
chalcone analogues with novel dual antioxidant mechanisms as potential
anti-ischemic stroke agents. Acta Pharmaceutica Sinica B 9(2): 335-350.
Wang,
L., Yang, X., Zhang, Y., Chen, R., Cui, Y. & Wang, Q. 2019.
Anti-inflammatory chalcone-isoflavone
dimers and chalcone dimers from Caragana
jubata. Journal of Natural Products 82(10): 2761-2767.
Wilhelm,
A., Kendrekar, P., Noreljaleel, A.E., Abay, E.T., Bonnet, S.L., Wiesner, L., de
Kock, C., Swart, K.J. & van der Westhuizen, J.H. 2015. Syntheses and in vitro antiplasmodial activity of
aminoalkylated chalcones and analogues. Journal of Natural Products 78(8): 1848-1858.
World
Health Organization (WHO). 2019 Malaria Vaccines. Geneva, Switzerland:
WHO Press.
World
Health Organization (WHO). 2018. World Malaria Report. Geneva,
Switzerland: WHO Press.
Yang,
J.L., Ma, Y.H., Li, Y.H., Zhang, Y.P., Tian, H.C., Huang, Y.C., Li, Y., Chen,
W. & Yang, L.J. 2019. Design, synthesis, and aanticancer activity of novel
trimethoxyphenyl-derived chalcone-benzimidazolium salts. ACS Omega 4(23): 20381-20393.
Yuvaniyama,
J., Chitnumsub, P., Kamchonwongpaisan, S., Vanichtanankul, J., Sirawaraporn,
W., Taylor, P., Walkinshaw, M.D. & Yuthavong, Y. 2003. Insights into
antifolate resistance from malarial DHFR-TS structures. Nature Structural
& Molecular Biology 10(5): 357-365.
Zhang,
J., Zhang, J., Hao, G., Xin, W., Yang, F., Zhu, M. & Zhou, H. 2019. Design,
synthesis, and structure-activity
relationship of 7-propanamide benzoxaboroles as potent anticancer agents. Journal
of Medicinal Chemistry 62(14): 6765-6784.
*Pengarang untuk surat-menyurat; email:
jsyachri@umri.ac.id
|