Sains Malaysiana 49(11)(2020): 2859-2870
http://dx.doi.org/10.17576/jsm-2020-4911-24
Explicit
Schemes based on Rational Approximant for Solving First Order Initial Value
Problems
(Skim
tak Tersirat berdasarkan Pendekatan Nisbah bagi Menyelesaikan Masalah Nilai
Awal Peringkat Pertama)
A’IN
NAZIFA FAIRUZ1, ZANARIAH ABDUL MAJID1,2* & ZARINA
BIBI IBRAHIM2
1Institute for Mathematical Research, Universiti
Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
2Department of Mathematics, Faculty of Science, Universiti
Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
Diserahkan: 17 Januari 2020/Diterima: 20 Mei 2020
ABSTRACT
A class
of rational methods of the second, third and fourth-order are proposed in this
study. The formulas are developed based on a rational function with the
denominator of degree one. Besides that, the concept of the closest points of
approximation is also emphasized in formulating these methods. The derived
methods are not self-starting; thus, an existing rational method is applied to
calculate the starting values. The stability regions of the methods are also
illustrated in this paper and suggest that only the second-order method is
A-stable, while the third and fourth-order methods are not. The proposed formulas
are examined on different problems, in which the solution possesses
singularity, stiff and singularly perturbed problems. The numerical results
show the capability of the proposed methods in solving problems with
singularity. It also suggests that the developed schemes are more accurate than
the existing rational multistep methods for problems with integer singular
point. It is also shown that the derived schemes are suitable for solving stiff
and singularly perturbed problems, although some of the formulas are not
A-stable.
Keywords:
Problem which solution possesses singularity; rational methods; singularly
perturbed problem; stiff problem
ABSTRAK
Suatu
kelas kaedah nisbah bagi peringkat kedua, ketiga dan keempat dicadangkan dalam
kajian ini. Kaedah ini dirumus berdasarkan fungsi nisbah yang mempunyai
penyebut berdarjah satu. Selain itu, konsep titik penghampiran terdekat juga
ditekankan dalam merumus kaedah ini. Kaedah yang dirumus ini merupakan kaedah
yang tidak bermula dengan sendirinya. Justeru, suatu kaedah nisbah sedia ada
digunakan untuk menghitung nilai pemula. Rantau kestabilan bagi kaedah nisbah
tersebut juga dijelaskan dan mencadangkan bahawa hanya kaedah peringkat kedua
adalah A-stabil, manakala kaedah peringkat ketiga dan keempat pula bukan A-stabil.
Kaedah yang dicadangkan telah diuji pada masalah yang berbeza, iaitu masalah
dengan penyelesaian yang mempunyai kesingularan, kekakuan dan pengusikan
singular. Hasil berangka menunjukkan kebolehan kaedah tersebut dalam
menyelesaikan masalah dengan kesingularan. Hasil juga mencadangkan bahawa
penghampiran yang diberikan oleh kaedah yang dirumus adalah lebih jitu
berbanding kaedah multilangkah nisbah bagi masalah dengan titik singular
integer. Keputusan juga menunjukkan bahawa kaedah yang dicadangkan sesuai untuk
menyelesaikan masalah kekakuan dan masalah dengan pengusikan singular walaupun
sebahagian daripada rumus tersebut bukanlah A-stabil.
Kata
kunci: Kaedah nisbah; masalah dengan pengusikan singular; masalah dengan
penyelesaian yang mempunyai kesingularan; masalah kekakuan
RUJUKAN
Abelman, S. & Eyre, D. 1990. A numerical study of
multistep methods based on continued fraction. Computers and Mathematics
with Applications 20(8):
51-60.
Adeboye, K.R. & Umar, A.E. 2013. Generalized rational
approximation method via pade approximants for the solutions of IVPs with
singular solution and stiff differential equations. Journal of Mathematical
Sciences 2(1): 327-368.
Fatunla, S. 1986. Numerical treatment of singular initial
value problems. Computers and Mathematics with Application 12B(5-6): 1109-1115.
Gadella, M. & Lara, L.P. 2013. A numerical method for
solving ODE by rational approximation. Applied Mathematical Sciences 7(23): 1119-1130.
Ikhile, M. 2001. Coefficients for studying one-step rational
schemes for ivps in odes: I. Computers and Mathematics with Applications 44(3-4): 769-781.
Lambert, J.D. 1973. Computational Methods in Ordinary
Differential Equations. London: John Wiley and Sons.
Musa, H., Suleiman, M.B., Ismail, F., Senu, N. &
Ibrahim, Z.B. 2013. An improved 2-point block backward differentiation formula
for solving stiff initial value problems. In AIP Conference Proceedings 1522. pp. 211-220.
Musa, H., Suleiman, M. & Senu, N. 2012. Fully implicit
3-point block extended backward differentiation formula for stiff initial
value problems. Applied Mathematical Sciences 6(85): 4211-4228.
Okosun, K.O. & Ademiluyi, R. 2007a. A three step
rational methods for integration of differential equations with singularities. Research Journal of Applied Science 2(1): 84-88.
Okosun, K.O. & Ademiluyi, R. 2007b. A two-step second
order inverse polynomial methods for integration of differential equations
with singularities. Research Journal of Applied Sciences 2(1): 13-16.
Otunta, F.O. & Nwachukwu, G.C. 2005. Rational one-step
numerical integrator for initial value problems in ordinary differential
equations. Journal of the Nigerian Association of Mathematical Physics 9: 285-295.
Ramos, H. 2007. A non-standard explicit integration scheme
for initial value problem. Applied Mathematics and Computation 189: 710-718.
Ramos, H., Singh, G., Kanwar, V. & Bhatia, S. 2017. An
embedded 3(2) pair of nonlinear methods for solving first order initial-value
ordinary differential system. Numerical Algorithm 75(3): 509-529.
Ramos, H., Singh, G., Kanwar, V. & Bhatia, S. 2015.
Solving first order initial value problems by using an explicit non-standard
a-stable one-step method in variable step-size formulation. Applied
Mathematics and Computation 268:
796-805.
Teh, Y.Y. 2014. An explicit two-step rational method for the
numerical solution of first order initial value problem. In AIP Conference
Proceedings 1605. pp.
96-100.
Teh, Y.Y. & Yaacob, N. 2013. A new class of rational
multistep methods for solving initial value problems. Malaysian Journal of
Mathematical Science 7(1):
31-57.
Teh, Y.Y., Zurni, O. & Mansor, K.H. 2016. Rational block
method for the numerical solution of first order initial value problem I:
concept and ideas. Global Journal of Pure and Applied Mathematics 12(4): 3787-3808.
Teh, Y.Y., Yaacob, N. & Alias, N. 2011. A new class of
rational multistep methods for the numerical solution of first order initial
value problem. Matematika 27(1):
59-78.
*Pengarang untuk surat-menyurat; email: am_zana@upm.edu.my
|