Sains Malaysiana 49(12)(2020): 3017-3028
http://dx.doi.org/10.17576/jsm-2020-4912-13
Effect of Chenodeoxycholic Acid on the Performance of Dye-sensitized Solar Cells utilizing
Pinang Palm (Areca catechu) Dye
(Kesan Asid Kenodeoksikolik terhadap Prestasi Sel Suria Pekaan Pewarna yang menggunakanPewarna Pokok Pinang (Areca
catechu)
ASMAA SOHEIL NAJM1, NORASIKIN
A. LUDIN2*, NORUL HISHAM HAMID3, MOHD ADIB IBRAHIM2,
MOHD ASRI MAT TERIDI2, KAMARUZZAMAN SOPIAN2, HAZIM MORIA4, ARAA MEBDIR HOLI5, ASLA A. AL-ZAHRANI6 & HASANAIN SALAH NAEEM7
1Department of Electrical Electronic & Systems Engineering, Faculty
of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
3Biocomposite Unit, Institute of Tropical
Forestry and Forest Products, Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
4Department of Mechanical Engineering Technology,
Yanbu Industrial College, Yanbu Al-Sinaiyah 41912, Kingdom
of Saudi Arabia
5Department
of Physics, College of Education, University of Al-Qadisiyah,
Al-Diwaniyah, Al-Qadisiyah 58002, Iraq
6Imam Abdulrahman Bin Faisal
University, Eastern Region, Dammam, Saudi Arabia
7School of Chemical Sciences and Food Technology, Faculty of Science
and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 12 Ogos 2020/Diterima: 30 Ogos 2020
ABSTRACT
This study examined and described the optical and
photovoltaic (PV) characterizations of the Fruit Areca catechu (pinang) as a new
type of organic sensitizer. Recent reports stated that including chenodeoxycholic acid (CDCA) in the dye improves the
performance of dye-sensitized solar cells (DSSCs). The effectiveness of PV dye
was investigated by applying it in a DSSC. The absorption spectra indicated
that natural dyes with CDCA has an excellent stabilizing ability. The
Fourier-transform infrared spectra indicated the existence of carboxylic and
hydroxyl functional groups in the naturally extracted dye. These functional
groups were responsible for the rapid electron transfer and strong electronic
linkages of interactions within the TiO2 surface. In this study,
photoluminescence spectra analysis showed that by narrowing the bandgap,
incorporating CDCA as a co-adsorbent in natural dye could generate a
significant photocurrent. The overall power conversion efficiency was enhanced
by 4.6%. Moreover, the cell efficiency reached up to 0.076% after adding 1.5 mM of CDCA without optimizing the sensitization time.
Results demonstrated that the present study contributes toward the improvement
of DSSC through efficient electron injection.
Keywords: Areca catechu; chenodeoxycholic acid; DSSC; natural dye
ABSTRAK
Penyelidikan ini mengkaji dan menerangkan ciri optik dan fotovoltaik
(PV) buah pinang (Areca catechu) sebagai sejenis pemeka organik yang
baru. Laporan terkini menyatakan bahawa memasukkan asid kenodeoksikolik (CDCA) di dalam pemeka boleh meningkatkan prestasi sel
suria pemeka warna (DSSCs). Keberkesanan pemeka PV tersebut dikaji dengan
menerapkannya di dalam sel DSSC. Spektrum penyerapan menunjukkan bahawa pewarna
semula jadi dengan CDCA mempunyai keupayaan menstabilkan pemeka yang sangat
baik. Spektrum transformasi Fourier inframerah menunjukkan kewujudan kumpulan
berfungsi karboksilik dan hidroksil dalam pewarna ekstrak semula jadi tersebut. Kumpulan berfungsi ini bertanggungjawab
untuk pemindahan elektron yang cepat dan hubungan interaksi elektronik yang
kuat di dalam permukaan TiO2. Dalam kajian ini, analisis spektrum
cahaya menunjukkan bahawa dengan merapatkan jurang lebar, memasukkan CDCA
sebagai penyerap bersama dalam pewarna semula jadi dapat menghasilkan foto arus
yang signifikan. Keseluruhan kecekapan penukaran tenaga telah meningkat
sebanyak 4.6%. Selanjutnya, kecekapan sel mencapai hingga 0.076% setelah
menambahkan 1.5 mM CDCA tanpa mengoptimumkan masa pemekaan. Hasil menunjukkan
bahawa kajian ini menyumbang ke arah peningkatan prestasi DSSC melalui suntikan
elektron yang cekap.
Kata kunci: Areca catechu; asid kenodeoksikolik; DSSC; pewarna semula jadi
RUJUKAN
Amarasinghe, H.K., Usgodaarachchi, U.S., Johnson, N.W., Lalloo,
R. & Warnakulasuriya, S. 2010. Betel-quid chewing
with or without tobacco is a major risk factor for oral potentially malignant
disorders in Sri Lanka: A case-control study. Oral oncology 46(4):
297-301.
Çakar, S. & Özacar, M. 2016. Fe–tannic acid complex dye as photo
sensitizer for different morphological ZnO based
DSSCs. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 163: 79-88.
Calogero, G. & di
Marco, G. 2008. Red Sicilian orange and purple eggplant fruits as natural
sensitizers for dye-sensitized solar cells. Solar Energy Materials and Solar
Cells 92(11): 1341-1346.
Chang, H., Wu,
H.M., Chen, T.L., Huang, K.D., Jwo, C.S. & Lo,
Y.J. 2010. Dye-sensitized solar cell using natural dyes extracted from spinach
and ipomoea. Journal of Alloys and Compounds 495(2): 606-610.
Chevrier, M., Fattori, A., Lasser, L., Kotras, C., Rose, C., Cangiotti,
M. & Dubois, P. 2020. In depth analysis of photovoltaic performance of
chlorophyll derivative-based “all solid-state” dye-sensitized solar cells. Molecules 25(1): 198.
Du, J., Zhang, J.,
Liu, Z., Han, B., Jiang, T. & Huang, Y. 2006. Controlled synthesis of
Ag/TiO2 core-shell nanowires with smooth and bristled surfaces via a one-step
solution route. Langmuir 22(3): 1307-1312.
Gómez-Ortíz, N.M., Vázquez-Maldonado, I.A., Pérez-Espadas, A.R., Mena-Rejón, G.J., Azamar-Barrios, J.A. & Oskam,
G. 2010. Dye-sensitized solar cells with natural dyes extracted from achiote seeds. Solar Energy Materials and Solar Cells 94(1): 40-44.
Grätzel, M. 2003.
Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C:
Photochemistry Reviews 4(2): 145-153.
Green, M.A.,
Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., Yoshita, M. & Ho-Baillie, A.W. 2020. Solar cell
efficiency tables (Version 55). Progress in Photovoltaics 28(1): 3-15.
Guo, S., Wen, D., Zhai, Y., Dong, S. & Wang, E. 2010. Platinum
nanoparticle ensemble-on-graphene hybrid nanosheet:
One-pot, rapid synthesis, and used as new electrode material for
electrochemical sensing. ACS Nano 4(7): 3959-3968.
Gürses, A., Açıkyıldız, M., Güneş,
K. & Gürses, M.S. 2016. Dyes and pigments: Their
structure and properties. In Dyes and Pigments. Berlin: Springer. pp.
13-29.
Hao, D.C., Xiao, P.G., Huang B.L., Ge, G.B. & Yang, L. 2008. Interspecific relationships and origins of Taxaceae and Cephalotaxaceae revealed by partitioned Bayesian analyses of chloroplast and nuclear DNA sequences. Plant Systematics and Evolution 276: 89-104.
Hemalatha, K.V., Karthick, S.N., Raj, C.J., Hong, N.Y., Kim, S.K. & Kim,
H.J. 2012. Performance of Kerria japonica and Rosa chinensis flower dyes as sensitizers
for dye-sensitized solar cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 96: 305-309.
Holi, A.M., Al-Zahrani, A.A., Najm, A.S., Chelvanathan, P. & Amin, N. 2020. PbS/CdS/ZnO nanowire arrays:
Synthesis, structural, optical, electrical, and photoelectrochemical properties. Chemical Physics Letters 750: 137486.
Hosseinpanahi, K., Abbaspour-Fard, M.H., Feizy, J.
& Reza Golzarian, M. 2017. Dye-sensitized solar
cell using saffron petal extract as a novel natural sensitizer. Journal of
Solar Energy Engineering 139: 021009.
Ismail, M., Ludin, N.A., Norul Hisham H., Adib, I.M. & Sopian, K. 2018. The effect of chenodeoxycholic acid (CDCA) in Mangosteen (Garcinia mangostana) pericarps sensitizer for dye-sensitized
solar cell (DSSC). Journal of Physics Conference Series 1083. Bristol:
IOP Science. p. 012018.
Ismail, M., Ludin, N.A., Hamid, N.H., Ibrahim, M.A., Zulfakar, M.S., Mohamed, N.M. & Sopian,
K. 2017. Characterizations of natural dye from Garcinia mangostana with graphene oxide (GO) as sensitizer in dye-sensitizer solar cells. AIP
Conference Proceedings 1838. Melville: AIP Publishing LLC. p. 0120017.
Jasim, K.E. 2012.
Natural dye-sensitized solar cell based on nanocrystalline TiO2. Sains Malaysiana 41(8): 1011-1016.
Jung, J.S. 2017.
Making of natural dyeing scarves by tie-dyeing technique. MATEC Web of
Conferences 108. Les Ulis: EDP Sciences.
p. 03006.
Krishna, N.V.,
Krishna, J.V.S., Mrinalini, M., Prasanthkumar,
S. & Giribabu, L. 2017. Role of
co‐sensitizers in dye‐sensitized solar cells. ChemSusChem 10(23): 4668-4689.
Li, J., Wu, W.,
Yang, J., Tang, J., Long, Y. & Hua, J. 2011. Effect of chenodeoxycholic acid (CDCA) additive on phenothiazine dyes sensitized photovoltaic performance. Science China Chemistry 54: 699.
Li, Y., Ku, S.H.,
Chen, S.M., Ali, M.A. & AlHemaid, F.M. 2013. Photoelectrochemistry for red cabbage extract as natural
dye to develop a dye-sensitized solar cells. International Journal of
Electrochemical Science 8: 1237-1245.
Mahir Faris Abdullah, Rozli Zulkifli, Zambri Harun, Shahrir Abdullah,
Wan Aizon Wan Ghopa, Asmaa Soheil Najm & Noor Humam Sulaiman.
2019. Impact of the TiO2 nanosolution concentration on heat transfer
enhancement of the twin impingement jet of a heated aluminum plate. Micromachines 10:
176.
Mercado, C.C.,
Knorr, F.J., McHale, J.L., Usmani, S.M., Ichimura, A.S. & Saraf, L.V.
2012. Location of hole and electron traps on nanocrystalline anatase TiO2. The Journal of Physical
Chemistry C 116(19): 10796-10804.
Mikroyannidis, J.A., Suresh,
P., Roy, M.S. & Sharma, G.D. 2011. New photosensitizer with phenylenebisthiophene central unit and cyanovinylene 4-nitrophenyl terminal units for dye-sensitized solar cells. Electrochimica Acta 56(16): 5616-5623.
Muhammad, N., Muh Zakir, M., Maulidiyah, M., Nurjannah, M. & Dwiprayogo, W. 2016. Plasmonic Silver-N/TiO 2 Effect on photoelectrocatalytic oxidation reaction. J. Mater. Environ. Sci. 7(9): 3334-3343.
Najm, A.S., Ludin, N.A., Abdullah, M.F., Almessiere,
M.A., Ahmed, N.M. & Al-Alwani, M.A. 2020a. Areca
catechu extracted natural new sensitizer for dye-sensitized solar cell:
Performance evaluation. Journal of Materials Science: Materials in
Electronics 31: 3564-3575.
Najm, A.S., Moria, H. & Ludin, N.A.
2020b. Areca catechu as photovoltaic sensitizer for dye-sensitized solar
cell (DSSC). Biointerface Research in
Applied Chemistry 10(3): 5636-5639.
Najm, A.S., Mohamad,
A.B. & Ludin, N.A. 2017. The extraction and
absorption study of natural dye from Areca catechu for dye sensitized
solar cell application. AIP Conference Proceedings Series 1838.
Melville: AIP Publishing LLC. p. 020019
Narayan, M.R.
2012. Dye sensitized solar cells based on natural photosensitizers. Renewable
and Sustainable Energy Reviews 16: 208-215.
Oguchi, T., Sasaki, N.,
Hara, T., Tozuka, Y. & Yamamoto, K. 2003. Differentiated
thermal crystallization from amorphous chenodeoxycholic acid between the ground specimens derived from the polymorphs. International
Journal of Pharmaceutics 253(1-2): 81-88.
Portillo-Cortez,
K., Martinez, A., Dutt, A. & Santana, G. 2019.
N719 Derivatives for application in a dye-sensitized solar cell (DSSC): A
theoretical study. The Journal of Physical Chemistry A 123(51):
10930-10939.
Pugliese, D., Shahzad, N., Sacco, A., Musso,
G., Lamberti, A., Caputo, G. & Pirri, C.F. 2013. Fast TiO2 sensitization using
the semisquaric acid as anchoring group. International
Journal of Photoenergy 2013: 871526.
Purgato, F.L.S., Pronier, S., Olivi, P., de Andrade, A.R., Léger, J.M., Tremiliosi-Filho, G., Kokoh, K.B. 2012. Direct ethanol fuel cell: Electrochemical performance at 90 °C on Pt and PtSn/C electrocatalysts. Journal of Power Sources 198: 95-99.
Qu, S., Wu, W.,
Hua, J., Kong, C., Long, Y. & Tian, H. 2010. New diketopyrrolopyrrole (DPP) dyes for efficient dye-sensitized solar cells. The Journal of Physical
Chemistry C 114(2): 1343-1349.
Riyaz Ahmad Mohamed Ali & Nafarizal Nayan. 2010. Fabrication
and analysis of dye-sensitized solar cell using natural dye extracted from
dragon fruit. International Journal of Integrated Engineering 2(3):
55-62.
Safie, N.E., Hamid,
N.H., Sepeai, S., Teridi,
M.A.M., Ibrahim, M.A., Sopian, K. & Arakawa, H.
2017. Energy levels of natural sensitizers extracted from rengas (Gluta spp.) and mengkulang (Heritiera elata)
wood for dye-sensitized solar cells. Materials for Renewable and Sustainable
Energy 6: 5.
San Esteban. A.C.M. & Enriquez, E.P. 2013. Graphene–anthocyanin mixture as photosensitizer for
dye-sensitized solar cell. Solar Energy 98(Part C): 392-399.
Senthil, T.S., Muthukumarasamy, N., Velauthapillai,
D., Agilan, S., Thambidurai,
M. & Balasundaraprabhu, R. 2011. Natural dye (cyanidin 3-O-glucoside) sensitized nanocrystalline TiO2 solar cell fabricated using liquid
electrolyte/quasi-solid-state polymer electrolyte. Renewable Energy 36(9): 2484-2488.
Sharma, R. & Ghoshal, G. 2020. Optimization of carotenoids production by Rhodotorula mucilaginosa (MTCC-1403) using agro-industrial waste in bioreactor: A statistical approach. Biotechnology
Reports 25: e00407.
Sharma, S., Siwach, B., Ghoshal, S.K. &
Mohan, D. 2017. Dye sensitized solar cells: From genesis to recent drifts. Renewable
and Sustainable Energy Reviews 70: 529-537.
Shrestha, J., Shanbhag, T., Shenoy, S., Amuthan, A., Prabhu, K., Sharma,
S. & Kafle, S. 2010. Antiovulatory and abortifacient effects of Areca catechu (betel nut) in female rats. Indian
Journal of Pharmacology 42(5): 306-311.
Su’ait, M.S., Rahman,
M.Y.A. & Ahmad, A. 2015. Review on polymer electrolyte in dye-sensitized
solar cells (DSSCs). Solar Energy 115: 452-470.
Toor, R.A., Sayyad,
M.H., Nasr, N., Sajjad, S., Shah, S.A.A. & Manzoor, T. 2016. Efficiency enhancement of dye sensitized
solar cells with a low cost co-adsorbent in N719 dye. International Journal
of Sustainable Energy and Environment Research 5(3): 46-50.
Vidhya, R. & Narain, A. 2011. Formulation and evaluation of preserved products utilizing under exploited fruit, wood apple (Limoniaacidissima). American-Eurasian J. Agric. & Environ. Sci. 10(1): 112-118.
Vittal, R. & Ho,
K.C. 2017. Zinc oxide based dye-sensitized solar cells: A review. Renewable
and Sustainable Energy Reviews 70: 920-935.
Wang, Z.S., Cui,
Y., Dan-oh, Y., Kasada, C., Shinpo,
A. & Hara, K. 2007. Thiophene-functionalized coumarin dye for efficient dye-sensitized solar cells:
Electron lifetime improved by coadsorption of deoxycholic acid. The Journal of Physical Chemistry C 111(19): 7224-7230.
Wongcharee, K., Meeyoo, V. & Chavadej, S.
2007. Dye-sensitized solar cell using natural dyes extracted from rosella and
blue pea flowers. Solar Energy Materials and Solar Cells 91(7): 566-571.
Yamazaki, E.,
Murayama, M., Nishikawa, N., Hashimoto, N., Shoyama,
M. & Kurita, O. 2007. Utilization of natural carotenoids as
photosensitizers for dye-sensitized solar cells. Solar Energy 81(4):
512-516.
Yum, J.H., Jang,
S.R., Humphry-Baker, R., Grätzel, M., Cid, J.J.,
Torres, T. & Nazeeruddin, M.K. 2008. Effect of coadsorbent on the photovoltaic performance of zinc pthalocyanine-sensitized solar cells. Langmuir 24(10): 5636-5640.
Zhang, G., Bala, H., Cheng, Y., Shi, D., Lv,
X., Yu, Q. & Wang, P. 2009. High efficiency and stable dye-sensitized solar
cells with an organic chromophore featuring a binary π-conjugated spacer. Chemical
Communications 16: 2198-2200.
Zhou, H., Wu, L.,
Gao, Y. & Ma, T. 2011. Dye-sensitized solar cells using 20 natural dyes as
sensitizers. Journal of Photochemistry and Photobiology A: Chemistry 219(2-3): 188-194.
*Pengarang untuk surat-menyurat; email: sheekeen@ukm.edu.my
|