Sains Malaysiana 49(12)(2020): 3145-3154
http://dx.doi.org/10.17576/jsm-2020-4912-26
Electrochemical
Reaction and Dissociation of Glycerol on PdAu
Surface Catalyst
(Tindak
Balas Elektrokimia dan Pemisahan Gliserol pada Permukaan Pemangkin PdAu)
NABILA
A. KARIM1*, NORILHAMIAH YAHYA2, MUHAMMAD SYAFIQ1 & SITI KARTOM KAMARUDIN1
1Fuel Cell Institute, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Malaysian Institute of Chemical and
Bioengineering Technology, Universiti Kuala Lumpur, 78000 Alor Gajah, Melaka, Malaysia
Diserahkan: 11 Ogos
2020/Diterima: 11 September 2020
ABSTRACT
Direct
Glycerol Fuel Cell is one of the alternative energy that can produce
electricity without burning. The production of electricity without combustion
can reduce the use of fossil fuel as well as reduce environmental pollution. A
new catalyst of PdAu has been synthesized in this study to increase the
activity of the glycerol oxidation reaction. Morphologies analysis was
performed on CNF-supported synthesized PdAu. FESEM and TEM image show the PdAu
supported on the CNF surface. Both PdAu and CNF has a diameter size of 4-6 nm
and 80-130 nm, respectively. In CV analysis, PdAu/CNF has produced an oxidation
peak and current density at -0.9 V vs. SCE and 70 mA/cm2,
respectively. Each mechanism of glycerol dissociation step during glycerol
oxidation, different atomic active sites are required in PdAu. For example, for
glycerol adsorption, Au atom as an active site while for *C3H7O3 requires Pd atom and Au atom as the active site. The Au catalyst model shows
better adsorption as Au/CNF has a slightly more negative oxidation peak than
PdAu. Nevertheless, the Au catalyst showed less durability compared to PdAu.
Keywords:
Electro-catalyst; electrochemical reaction; glycerol; PdAu; surface reaction
ABSTRAK
Sel
Bahan Api Gliserol Langsung adalah salah satu tenaga alternatif yang dapat
menghasilkan elektrik tanpa proses pembakaran. Pengeluaran elektrik tanpa
pembakaran dapat mengurangkan penggunaan bahan bakar fosil serta mengurangkan
pencemaran alam sekitar. Mangkin baru PdAu telah disintesis dalam kajian ini
untuk meningkatkan aktiviti tindak balas pengoksidaan gliserol. Analisis
morfologi dilakukan pada PdAu yang telah disintesis dan disokong oleh CNF.
Gambar FESEM dan TEM menunjukkan PdAu disokong pada permukaan CNF. Kedua-dua
PdAu dan CNF masing-masing mempunyai ukuran diameter 4-6 nm dan 80-130 nm.
Dalam analisis CV, PdAu/CNF telah menghasilkan puncak pengoksidaan dan
ketumpatan arus masing-masing pada -0.9 V vs SCE dan 70 mA/cm2.
Setiap mekanisme langkah pemisahan gliserol semasa pengoksidaan gliserol, tapak
aktif atom yang berbeza diperlukan dalam PdAu. Sebagai contoh, untuk penjerapan
gliserol, atom Au sebagai tapak aktif sementara untuk *C3H7O3 memerlukan atom Pd dan atom Au sebagai tapak aktif. Model mangkin Au
menunjukkan penjerapan yang lebih baik kerana Au/CNF mempunyai puncak
pengoksidaan yang sedikit lebih negatif daripada PdAu. Walaupun begitu, mangkin
Au menunjukkan daya tahan yang lebih rendah berbanding dengan PdAu.
Kata
kunci: Elektro-mangkin; gliserol; permukaan tindak balas; PdAu tindak balas elektrokimia
RUJUKAN
Abdullah,
N., Kamarudin, S.K., Shyuan, L.K. & Karim, N.A. 2017. Fabrication and
characterization of new composite TiO2 carbon nanofiber anodic
catalyst support for direct methanol fuel cell via electrospinning method. Nanoscale Research Letters 12(1): 613.
Alias,
M.S., Kamarudin, S.K., Zainoodin, A.M. & Masdar, M.S. 2020. Active direct
methanol fuel cell: An overview. International Journal of Hydrogen Energy 45(38): 19620-19641.
Araujo,
H.R., Zanata, C.R., Teixeira-Neto, E., de Lima, R.B., Batista, B.C., Giz, M.J.
& Camara, G.A. 2019. How the adsorption of Sn on Pt (100) preferentially
oriented nanoparticles affects the pathways of glycerol electro-oxidation. Electrochimica
Acta 297: 61-69.
Brueckner,
T.M., Wheeler, E., Chen, B., El Sawy, E.N. & Pickup, P.G. 2019. Screening
of catalysts for the electrochemical oxidation of organic fuels in a
multi-anode proton exchange membrane cell. Journal of The Electrochemical Society 166(13): F942-F948.
Cui,
X., Li, Y., Zhao, M., Xu, Y., Chen, L., Yang, S. & Wang, Y. 2019. Facile growth of ultra-small Pd
nanoparticles on zeolite-templated mesocellular graphene foam for enhanced
alcohol electro-oxidation. Nano
Research 12(2): 351-356.
Day,
C. & Day, G. 2017. Climate change, fossil fuel prices and depletion: The
rationale for a falling export tax. Economic
Modelling 63: 153-160.
Gao,
F., Zhang, Y., Song, P., Wang, J., Yan, B., Sun, Q., Li, L., Zhu, X. & Du,
Y. 2019. Shape-control of one-dimensional PtNi nanostructures as efficient
electrocatalysts for alcohol electro-oxidation. Nanoscale 11(11): 4831-4836.
Ghosh,
S., Bysakh, S. & Basu, R.N. 2019. Bimetallic Pd96Fe4 nanodendrites embedded
in graphitic carbon nanosheets as highly efficient anode electrocatalysts. Nanoscale
Advances 1(10): 3929-3940.
Houache,
M.S., Hughes, K., Ahmed, A., Safari, R., Liu, H., Botton, G.A. & Baranova,
E.A. 2019. Electrochemical valorization of glycerol on Ni-rich bimetallic NiPd
nanoparticles: Insight into product selectivity using in situ polarization modulation infrared-reflection absorption
spectroscopy. ACS Sustainable Chemistry & Engineering 7(17):
14425-14434.
Karim,
N.A. & Kamarudin, S.K. 2017. Novel heat-treated cobalt
phthalocyanine/carbon-tungsten oxide nanowires (CoPc/C-W18O49) cathode catalyst
for direct methanol fuel cell. Journal
of Electroanalytical Chemistry 803: 19-29.
Karim,
N.A., Kamarudin, S.K. & Loh, K.S. 2017. Performance of a novel non-platinum
cathode catalyst for direct methanol fuel cells. Energy Conversion and Management 145:
293-307.
Martins,
C.A., Ibrahim, O.A., Pei, P. & Kjeang, E. 2019. In situ decoration of metallic catalysts in flow-through
electrodes: Application of Fe/Pt/C for glycerol oxidation in a microfluidic
fuel cell. Electrochimica Acta 305: 47-55.
Mori,
D. & Hirose, K. 2009. Recent challenges of hydrogen storage technologies
for fuel cell vehicles. International Journal of Hydrogen Energy 34(10):
4569-4574.
Nascimento,
A.P. & Linares, J.J. 2014. Performance of a direct glycerol fuel cell using
KOH doped polybenzimidazole as electrolyte. Journal of the Brazilian
Chemical Society 25(3): 509-516.
Ning,
X., Zhou, X., Luo, J., Ma, L., Xu, X. & Zhan, L. 2019. Glycerol and formic
acid electro-oxidation over Pt on S-doped carbon nanotubes: Effect of carbon
support and synthesis method on the metal-support interaction. Electrochimica
Acta 319: 129-137.
Sun,
Q., Gao, F., Zhang, Y., Wang, C., Zhu, X. & Du, Y. 2019. Ultrathin
one-dimensional platinum-cobalt nanowires as efficient catalysts for the
glycerol oxidation reaction. Journal
of Colloid and Interface Science 556: 441-448.
Tam,
B., Duca, M., Wang, A., Fan, M., Garbarino, S. & Guay, D. 2019. Promotion
of glycerol oxidation by selective Ru decoration of (100) domains at
nanostructured Pt electrodes. ChemElectroChem 6(6): 1784-1793.
Wang,
C., Song, P., Gao, F., Song, T., Zhang, Y., Chen, C., Li, L., Jin, L. & Du,
Y. 2019. Precise synthesis of monodisperse PdAg nanoparticles for
size-dependent electrocatalytic oxidation reactions. Journal of Colloid and Interface Science 544:
284-292.
Wang,
J., Wang, H. & Fan, Y. 2018. Techno-economic challenges of fuel cell
commercialization. Engineering 4(3): 352-360.
Wang,
W., Wang, Z., Wang, J., Zhong, C.J. & Liu, C.J. 2017. Highly active and
stable Pt-Pd alloy catalysts synthesized by room-temperature electron reduction
for oxygen reduction reaction. Advanced Science 4(4): 1600486.
Yahya,
N., Kamarudin, S.K., Karim, N.A., Masdar, M.S. & Loh, K.S. 2017. Enhanced
performance of a novel anodic PdAu/VGCNF catalyst for electro-oxidation in a
glycerol fuel cell. Nanoscale
Research Letters 12 (1): 605.
Zakaria,
K., McKay, M., Thimmappa, R., Hasan, M., Mamlouk, M. & Scott, K. 2019.
Direct glycerol fuel cells: Comparison with direct methanol and ethanol fuel
cells. ChemElectroChem 6(9): 2578-2585.
Zhang,
Y., Gao, F., Song, P., Wang, J., Song, T., Wang, C., Chen, C., Jin, L., Li, L.,
Zhu, X. & Du, Y. 2019. Superior liquid fuel oxidation electrocatalysis
enabled by novel bimetallic PtNi nanorods. Journal of Power Sources 425:
179-185.
Zhang,
Z.C., Lerner, B., Lei, G.D. & Sachtler, W.M.H. 1993. Hydrocarbon-induced
agglomeration of Pd particles in Pd/HZSM-5. Journal of Catalysis 140(2):
481-496.
Zhou,
Y., Shen, Y., Xi, J. & Luo, X. 2019. Selective electro-oxidation of
glycerol to dihydroxyacetone by PtAg skeletons. ACS Applied Materials &
Interfaces 11(32): 28953-28959.
*Pengarang
untuk surat-menyurat; email: nabila.akarim@ukm.edu.my
|