Sains Malaysiana 49(12)(2020): 3197-3208
http://dx.doi.org/10.17576/jsm-2020-4912-31
Pengaruh Agen Kimia Berbeza terhadap Penguraian Terma dan Pembentukan Fasa Bahan La0.6SR0.4CoO3-
δ yang Disediakanmelalui Kaedah Sol-Gel
(Influence
of Different Chemical Agents on the Thermal Decomposition and Phase Formation
of La0.6Sr0.4CoO3-δ Material Prepared through Sol-Gel Method)
ABDULLAH
ABDUL SAMAT1,2, MAHENDRA RAO SOMALU3*, ANDANASTUTI
MUCHTAR3,4, HAMIMAH ABD. RAHMAN5 & NAFISAH OSMAN6
1Fakulti Teknologi Kejuruteraan, Universiti Malaysia Perlis (UniMAP), Kampus UniCITI ALAM, Sungai Chuchuh, Padang Besar 02100,
Perlis, Malaysia
2Pusat Kecemerlangan Sistem Tanpa Pemandu (Unmanned Aerial Systems), Universiti Malaysia Perlis (UniMAP), 01000 Kangar,
Perlis, Malaysia
3Institut Sel Fuel, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
4Jabatan Kejuruteraan Mekanikal dan Pembuatan, Fakulti Kejuruteraan dan Alam Bina, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
5Fakulti Kejuruteraan Mekanikal & Pembuatan, Universiti Tun Hussein Onn
Malaysia, 84600 Parit Raja, Batu Pahat, Johor Darul Takzim, Malaysia
6Fakulti Sains Gunaan, Universiti Teknologi MARA, 02600 Arau, Perlis, Malaysia
Diserahkan: 6 Ogos 2020/Diterima: 11 September 2020
ABSTRAK
Sifat penguraian terma dan pembentukan fasa bahan lantanum strontium kobalt oksida, La0.6Sr0.4CoO3-δ (LSC) yang disediakan melalui kaedah sol-gel berbantu agen kimia berbeza, iaitu agen serakan, agen pempolimeran dan agen permukaan aktif atau surfaktan telah dicirikan secara sistematik masing-masing melalui analisis termogravimetrik (TG) dan pembelauan sinar-X (XRD). Penguraian terma bahan organik dan bahan bukan organik yang tidak diperlukan dalam serbuk pelopor bahan LSC telah lengkap pada suhu kurang daripada 1000 °C bagi serbuk pelopor yang disediakan dengan menggunakan agen serakan dan agen pempolimeran, dan suhu melebihi 1000 °C bagi serbuk pelopor yang disediakan dengan menggunakan surfaktan. Sifat penguraian terma ini dipengaruhi oleh suhu pengeringan serbuk pelopor tersebut dan berat molekul agen kimia. Pembentukan fasa tunggal perovskit LSC telah disahkan dalam serbuk pelopor yang disediakan dengan menggunakan agen serakan, iaitu karbon teraktif dan agen pempolimeran, iaitu etilena glikol selepas serbuk pelopor tersebut dikalsin pada suhu 900 °C. Sebaliknya, fasa tunggal perovskit LSC tidak terbentuk secara lengkap dalam serbuk pelopor yang disediakan dengan menggunakan surfaktan (polietilena glikol, Triton-X-100,
Brij-97 dan Tween-80) walaupun selepas serbuk pelopor tersebut telah dikalsin pada suhu yang lebih tinggi iaitu 1100 °C. Kepekatan surfaktan, nisbah molar surfaktan kepada logam kation dan nilai pH larutan bahan pelopor yang tidak sesuai telah menyumbang kepada keputusan tersebut.
Kata kunci: Agen kimia; pembentukan fasa; penguraian terma; sel fuel oksida pepejal; sol-gel
ABSTRACT
The
thermal decomposition and phase formation behaviors of lanthanum strontium
cobalt oxide, La0.6Sr0.4CoO3-δ (LSC)
material prepared by sol-gel method assisted with different chemical agent
namely dispersing agent, polymerizing agent and surface-active agent or
surfactant were systematically characterized through thermogravimetric (TG) and X-ray diffraction (XRD) analysis. Thermal decomposition of unwanted
organic and inorganic compounds in the precursor powder of LSC material
completed at temperature below than 1000 °C for the precursor powder prepared using dispersing
and polymerizing agents, and at temperature above than 1000 °C for the precursor powder prepared using
surfactant. The thermal decomposition behavior was influenced by the drying
temperature of the prepared precursor powder and molecular weight of the
chemical agent. Formation of single LSC perovskite phase was confirmed in the
precursor powder prepared using dispersant, namely activated carbon and
polymerizing agent, namely ethylene glycol after the precursor powder was
calcined at 900 °C.
Conversely, single LSC perovskite phase did not completely form in the
precursor powder prepared using surfactant (polyethylene glycol, Triton-X-100,
Brij-97 dan Tween-80) even after it was calcined at a
higher temperature which is 1100 °C. Unsuitable surfactant concentration, molar
ratio of surfactant to metal cation and precursor material solution pH value
might contribute to the results.
Keywords:
Chemical agent; phase formation; solid oxide fuel cell; sol-gel; thermal
decomposition
RUJUKAN
Abdul
Samat, A., Jais, A.A., Somalu, M.R., Osman, N., Muchtar, A. & Lim, K.L.
2018. Electrical and electrochemical characteristics of La0.6Sr0.4CoO3-δ cathode materials synthesized by a modified citrate-EDTA sol-gel method
assisted with activated carbon for proton-conducting solid oxide fuel cell
application. Journal of Sol-Gel Science and Technology 86(3): 617-630.
Abdul
Samat, A., Somalu, M.R., Muchtar, A., Hassan, O.H. & Osman, N. 2016. LSC
cathode prepared by polymeric complexation method for proton-conducting SOFC
application. Journal of Sol-Gel Science and Technology 78(2): 382-393.
Abdul
Samat, A., Abdullah, N.A., Ishak, M.A.M. & Osman, N. 2012. Effect of heat
treatment on the phase formation of La0.6Sr0.4CoO3-α. World Academy of Science, Engineering and Technology 70: 822-826.
Baharuddin,
N.A., Muchtar, A., Somalu, M.R. & Seyednezhad, M. 2017. Influence of mixing
time on the purity and physical properties of SrFe0.5Ti0.5O3-δ powders produced by solution combustion. Powder Technology 313: 382-388.
Chevallier,
L., Zunic, M., Esposito, V., Di Bartolomeo, E. & Traversa, E. 2009. A
wet-chemical route for the preparation of Ni–BaCe0.9Y0.1O3−δ cermet anodes for IT-SOFCs. Solid State Ionics 180(9-10): 715-720.
Egger,
A., Bucher, E., Yang, M. & Sitte, W. 2012. Comparison of oxygen exchange
kinetics of the IT-SOFC cathode materials La0.5Sr0.5CoO3−δ and La0.6Sr0.4CoO3−δ. Solid
State Ionics 225: 55-60.
Garbayo,
I., Esposito, V., Sanna, S., Morata, A., Pla, D., Fonseca, L., Sabaté, N. &
Tarancón, A. 2014. Porous La0.6Sr0.4CoO3−δ thin film cathodes for large area micro solid oxide fuel cell power generators. Journal of Power Sources 248:
1042-1049.
Grządka,
E. & Matusiak, J. 2017. The effect of ionic and non-ionic surfactants and
pH on the stability, adsorption and electrokinetic properties of the alginic
acid/alumina system. Carbohydrate Polymers 175: 192-198.
Huízar-Félix,
A.M., Hernández, T., de la Parra, S., Ibarra, J. & Kharisov, B. 2012. Sol-gel based Pechini method synthesis and
characterization of Sm1−xCaxFeO3 perovskite 0.1 ≤ x ≤ 0.5. Powder Technology 229: 290-293.
Ismail,
I., Osman, N. & Jani, A.M.M. 2020. La0.6Sr0.4Co0.2Fe0.8O3−δ powder: A simple microstructure modification
strategy for enhanced cathode electrochemical performance. Journal of
Sol-Gel Science and Technology 94(2):
435-447.
Ismail,
I., Osman, N. & Jani, A.M.M. 2016. Tailoring the microstructure of La0.6Sr0.4Co0.2Fe0.8O3−α cathode material: The role of
dispersing agent. Journal of Sol-Gel Science and Technology 80(2): 259-266.
Mazlan,
N.A., Osman, N., Jani, A.M.M. & Yaakob, M.H. 2016. Role of ionic and
nonionic surfactant on the phase formation and morphology of Ba(Ce,Zr)O3 solid solution. Journal of Sol-Gel Science and Technology 78(1): 50-59.
Park,
J.W. & Lee, K.T. 2018. Enhancing performance of La0.8Sr0.2MnO3-δ-infiltrated
Er0.4Bi1.6O3 cathodes via controlling
wettability and catalyst loading of the precursor solution for IT-SOFCs. Journal
of Industrial and Engineering Chemistry 60: 505-512.
Rangel-Yagui,
C.O., Pessoa-Jr., A. & Costa
Tavares, L. 2005. Micellar solubilization of drugs. Journal of
Pharmaceutical Sciences 8(2):
147-163.
Rashid,
N.L.R., Somalu, M.R., Muchtar, A. & Wan Isahak, W.N.R. 2019. Properties of
Pr and In-doped BaZrCeY-based electrolyte for proton conducting fuel cell
systems. IOP Conference Series: Earth and
Enviromental Science 268: 012143.
Shao,
Z., Zhou, W. & Zhu, Z. 2012. Advanced synthesis of materials for
intermediate-temperature solid oxide fuel cells. Progress in Materials
Science 57(4): 804-874.
Somalu,
M.R., Abdul Samat, A., Muchtar, A. & Osman, N. 2018. Polymer-based approach
in ceramic materials processing for energy device applications. Academic
Journal of Polymer Science 1(5):
70-75.
Tao,
Y., Shao, J., Wang, J. & Wang, W.G. 2008. Synthesis and properties of La0.6Sr0.4CoO3−δ nanopowder. Journal of Power Sources 185(2): 609-614.
van
Doorn, R.H.E., Kruidhof, H., Nijmeijer, A., Winnubst, L. & Burggraaf, A.J.
1998. Preparation of La0.3Sr0.7CoO3-δ perovskite by thermal decomposition of metal-EDTA complexes. Journal of
Materials Chemistry 8(9):
2109-2112.
Vahid
Mohammadi, A. & Cheng, Z. 2015. Fundamentals of synthesis, sintering
issues, and chemical stability of BaZr0.1Ce0.7Y0.1Yb0.1O3-δ proton conducting electrolyte for SOFCs. Journal of The Electrochemical
Society 162(8): F803-F811.
Wang,
M.S., Wang, J.X., He, C.R., Xue, Y.J., Miao, H., Wang, Q. & Wang, W.G.
2015. A novel composite cathode La0.6Sr0.4CoO3−δ–BaZr0.1Ce0.7Y0.1Yb0.1O3−δ for intermediate temperature solid oxide fuel cells. Ceramics International 41(3): 5017-5025.
Wongmaneerung,
R., Yimnirun, R. & Ananta, S. 2009. Effect of two-stage sintering on phase
formation, microstructure and dielectric properties of perovskite PMN ceramics
derived from a corundum Mg4Nb2O9 precursor. Materials
Chemistry and Physics 114(2-3): 569-575.
Wu,
Y.C., Huang, P.Y. & Xu, G. 2017. Properties and microstructural analysis of
La1−xSrxCoO3−δ (x = 0 – 0.6)
cathode materials. Ceramics International 43(2): 2460-2470.
Zeng,
R. & Huang, Y. 2017. Enhancing surface activity of La0.6Sr0.4CoO3-δ cathode by a simple infiltration process. International Journal of Hydrogen
Energy 42(10): 7220-7225.
Zhuang,
S., Liu, Y., Zeng, S., Lv, J., Chen, X. & Zhang, J. 2016. A modified sol-gel method for low-temperature synthesis
of homogeneous nanoporous La1−xSrxMnO3 with large specific surface area. Journal of Sol-Gel Science and Technology 77(1): 109-118.
*Pengarang untuk surat-menyurat; email: mahen@ukm.edu.my
|