Sains Malaysiana 49(12)(2020): 3219-3228

http://dx.doi.org/10.17576/jsm-2020-4912-33

 

Effect of Precursors on the Growth and Physiochemical Properties of Bio-mimetic ZnFe2O4 Nanocomposites for Photoelectrochemical Application

(Kesan Prekursor terhadap Pertumbuhan dan Sifat Fisiokimia Nanokomposit ZnFe2O4 Bio-mimetik untuk Aplikasi Fotoelektrokimia)

 

MOHD FAIZAL MD NASIR1,2,4, WAN RAMLI WAN DAUD4,6, MOHAMAD AZUWA MOHAMED5, MOHAMAD HAFIZ MAMAT2,3, SAIFOLLAH ABDULLAH1,2 & MOHAMAD RUSOP MAHMOOD2,3*

 

1Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia

 

2NANO-SciTech Centre, Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia

 

3NANO-Electronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia

 

4Fuel Cell Institute (SELFUEL), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

5Centre for Advanced Material and Renewable Resources (CAMARR), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

6School of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 12 Ogos 2020/Diterima: 11 September 2020

 

ABSTRACT

Zinc ferrite (ZnFe2O4) photocatalysts have been prepared with different types of zinc precursors using the bio-mimetic synthesis method. The kapok fibre (Ceiba pentandra (L.) Gaertn) used as a sacrificial template. The physiochemical of prepared bio-mimetic materials were carried out thoroughly in this work. The FESEM analysis in mimetic zinc ferrite catalysts shows a distinctly different structural transition under different precursors conditions. The acetate precursor formed a hollow tubular structure while other precursors formed a hierarchal fibril structure. X-ray diffraction analysis showed a distinctly different phase transition while UV-Vis spectroscopy recorded variable optical properties beneath different precursor conditions. The EDX and ATR-FTIR spectroscopy confirmed the formation of the pure composite after the annealing process. Different type of precursors that used have leads to tuneable of the magnetic properties of the prepared materials. Electrophoretic deposition (EPD) method has been used to fabricate the synthesized materials as photo-electrodes on the FTO substrate then evaluated for photoelectrochemical (PEC) application. Changing the precursors in the preparation method show a significant effect on physicochemical and PEC performance. The morphology and surface structure of the prepared catalysts are correlated with the alteration of the precursors, then attributed to the charge transfer properties of the photocurrent density in PEC system. The bio-templated zinc ferrite catalysts are promising photoanode in the photocatalytic activities. It is interesting to note that the various forms of multi-structure such as hollow fibril core-shell offers an enormous impact in designing active photocatalyst with superior performance.

 

Keywords: Bio-mimetic; kapok fibre; photoelectrochemical; ZnFe2O4

 

ABSTRAK

Pemangkin zink ferit telah berjaya dihasilkan dengan beberapa jenis bahan pemula yang berlainan seperti zink asetat, zink klorida dan zink nitrat terhadap iron nitrat melalui teknik sintesis bio-mimetik. Serat kekabu (Ceiba pentandra (L.) Gaertn) digunakan sebagai bahan templat. Sifat fizikokimia sebatian zink ferit telah berjaya dicirikan sepenuhnya dalam kajian ini. Analisis morfologi (FESEM) menunjukkan perubahan struktur permukaan apabila bahan pemula yang berbeza digunakan. Bahan pemula zink asetat membentuk struktur tiub yang berongga manakala bahan pemula yang lain membentuk sebatian pemangkin yang berstruktur fibril hierarki. Analisis pembelau sinar-X dan spektroskopi UV-Vis masing-masing merekodkan peralihan fasa yang berbeza dan turut mencatatkan sifat optik yang berlainan yang disebabkan oleh pengaruh bahan pemula yang digunakan. Bahan pemula yang berlainan jenis telah didapati memberikan kesan yang signifikan serta turut menala sifat magnet pemangkin yang dihasilkan. Analisis spektroskopi EDX dan ATR-FTIR mengesahkan pembentukan sebatian komposit yang tulen selepas proses penyepuhlindapan bahan templat. Sebatian yang telah disintesis berjaya difabrikasi sebagai elektrod atas permukaan substrat FTO dengan menggunakan teknik pemendapan elektroforetik (EPD). Seterusnya, elektrod yang dihasilkan telah diuji dalam aktiviti foto-elektrokimia (PEC). Pengaruh bahan pemula berlainan jenis terhadap sifat fizikokimia dibincangkan dan dihubungkaitkan dalam aplikasi fotoelektrokimia.

 

Kata kunci: Bio-mimetik; fotoelektrokimia; serat kekabu; ZnFe2O4

 

RUJUKAN

Cai, A., Guo, A., Du, L., Chang, Y. & Wang, X. 2018. Nanofibrillated cellulose-assisted synthesis of fiber-like ZnO-ZnFe2O4 composites with enhanced visible-light-driven photocatalytic activity. The Journal of The Minerals, Metals & Materials Society 70(10): 2169-2172.

Frese, K.W. 1979. Simple method for estimating energy levels of solids. Journal of Vacuum Science and Technology 16(4): 1042-1044.

Gapusan, R.B. & Mary, D.L.B. 2020. Adsorption of anionic methyl orange dye and lead(II) heavy metal ion by polyaniline-kapok fiber nanocomposite. Materials Chemistry and Physics 243: 122682.

Hajibabaei, H., Gao, Y. & Hamann, T.W. 2018. Chapter 4: Unravelling the charge transfer mechanism in water splitting hematite photoanodes. RSC Energy and Environment Series 2018-Janua(20): 100-127.

Izabela, M., Ryżyńska, Z., Mrotek, E., Klimczuk, T. & Zielińska-Jurek, A. 2020. Synthesis of CoFe2O4 nanoparticles: The effect of ionic strength, concentration, and precursor type on morphology and magnetic properties. Journal of Nanomaterials 2020: 1-12.

Kim, C.W., Yeob, S.J., Cheng, H.M. & Kang, Y.S. 2015. A selectively exposed crystal facet-engineered TiO2 thin film photoanode for the higher performance of the photoelectrochemical water splitting reaction. Energy and Environmental Science 8(12): 3646-3653.

Kim, J.H., Kim, J.H., Jang, J.W., Kim, J.Y., Choi, S.H., Magesh, G. & Lee, J.S. 2015. Awakening solar water-splitting activity of ZnFe2O4 nanorods by hybrid microwave annealing. Advanced Energy Materials 5(6): 1401933.

Kisch, H. 2013. Semiconductor photocatalysis-mechanistic and synthetic aspects. Angewandte Chemie - International Edition 52(3): 812-847.

Li, J., Ng, D.H.L., Song, P., Song, Y. & Kong, C. 2015. Bio-inspired synthesis and characterization of mesoporous ZnFe2O4 hollow fibers with enhancement of adsorption capacity for acid dye. Journal of Industrial and Engineering Chemistry 23(March): 290-298.

Luo, Z., Li, C., Zhang, D., Wang, T. & Gong, J. 2016. Highly-oriented Fe2O3/ZnFe2O4 nanocolumnar heterojunction with improved charge separation for photoelectrochemical water oxidation. Chemical Communications 52(58): 9013-9015.

Mohamed, M.A., Zain, M.M.F., Jeffery Minggu, L., Kassim, M.B., Saidina Amin, N.A., Salleh, W.W.N. & Mohd Hir, Z.A. 2018. Constructing bio-templated 3D porous microtubular c-doped g-c3n4 with tunable band structure and enhanced charge carrier separation. Applied Catalysis B: Environmental 236: 265-279.

Peeters, P.D., Taffa, D.H., Kerrigan, M.M., Ney, A., Jöns, N., Rogalla, D. & Devi, A. 2017. Photoactive zinc ferrites fabricated via conventional cvd approach. ACS Sustainable Chemistry and Engineering 5(4): 2917-2926.

Pritchard, H.O. & Skinner, H.A. 1955. The concept of electronegativity. Chemical Reviews 55(4): 745-786.

Salehmin, M.N.I., Jeffery Minggu, L., Arifin, K., Mohamad Yunus, R., Mohamed, M.A. & Kassim, B.M. 2019. Recent advances on state-of-the-art copper (I/II) oxide as photoelectrode for solar green fuel generation: Challenges and mitigation strategies. Applied Catalysis A: General 582: 117104.

Shi, R., Zhang, Y., Wang, X., Ma, Q., Zhang, A. & Yang, P. 2018. Electrospun ZnFe2O4 nanotubes and nanobelts: Morphology evolution, formation mechanism and fenton-like photocatalytic activities. Materials Chemistry and Physics 207: 114-122.

Song, H., Zhu, L., Li, Y., Lou, Z., Xiao, M. & Ye, Z. 2015. Preparation of ZnFe2O4 nanostructures and highly efficient visible-light-driven hydrogen generation with the assistance of nanoheterostructures. Journal of Materials Chemistry A 3(16): 8353-8360.

Stevanović, V., Lany, S., Ginley, D.S., Tumas, W. & Zunger, A. 2014. Assessing capability of semiconductors to split water using ionization potentials and electron affinities only. Physical Chemistry Chemical Physics 16(8): 3706-3714.

Sven, W., Taffa, D.H. & Wark, M. 2018. Photoelectrocatalytic behavior of electrodeposited zinc ferrite films with varying Zn:Fe ratio. Journal of Photochemistry and Photobiology A: Chemistry 362: 49-57.

Varsha, S. & Chakarvarti, S.K. 2016. Biotemplates and their uses in nanomaterials synthesis: A review. American Journal of Bioengineering and Biotechnology 2(1): 1-4.

Vinosha, P.A., Mely, L.A., Jeronsia, J.E., Krishnan, S. & Jerome, D.S. 2017. Synthesis and properties of spinel ZnFe2O4 nanoparticles by facile co-precipitation route. Optik 134: 99-108.

Yang, X., Han, X., Chen, Z., Zhou, L., Zhao, B., Su, H. & Jiao, W. 2018. Fabrication of Li7La3Zr2O12 fibers using bio-mass template kapok. Materials Letters 217: 271-275.

Yec, C.C. & Zeng, H.C. 2014. Synthesis of complex nanomaterials via ostwald ripening. Journal of Materials Chemistry A 2(14): 4843-4851.

Zhang, P., Wang, T. & Gong, J. 2018. Current mechanistic understanding of surface reactions over water-splitting photocatalysts. Chem. 4(2): 223-245.

 

*Pengarang untuk surat-menyurat; email: rusop@uitm.edu.my

   

 

sebelumnya