Sains Malaysiana 49(12)(2020): 3243-3254
http://dx.doi.org/10.17576/jsm-2020-4912-35
Microstructure and
Discharge Performance of Aluminum Al 6061 Alloy as Anode for Electrolyte
Activated Battery
(Mikrostruktur dan Prestasi Nyahcas Aloi Aluminium Al 6061 sebagai Anod untuk Bateri Teraktif Elektrolit)
PRIYATHASHINY
PONGALI1, WAI YIN WONG1, ALVIE SIN VOI LO2,
SAMMY LAP IP CHAN3 & KEAN LONG LIM1*
1Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
2Faculty of Science and
Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu,
Sabah, Malaysia
3School of Materials
Science and Engineering, University of New South Wales, New South Wales, 2052, Australia
Diserahkan: 17 Ogos 2020/Diterima: 11 September 2020
ABSTRACT
Electrolyte
activated battery finds its important use during natural disaster emergencies,
such as floods and typhoons. Nevertheless, high corrosion rate will deteriorate
the discharge performance of the battery and it is influenced by the type of
electrolyte and discharge current. In this study, the corrosion and discharge
performance of a commercial Al 6061 aluminum alloy as an anode are investigated
at different discharge currents (0.001, 0.01, and 1 mA) and in different
electrolytes, namely salt water, urea, and distilled water. Scanning electron
microscopy results show that electrode in salt water has the most serious
corrosion, followed by that of in urea and in distilled water. These
electrode-electrolyte combinations are further investigated with potentiodynamic polarization, galvanostatic discharge, and electrochemical impedance
spectroscopy (EIS) to understand their discharge potential, discharge behavior,
and corrosion mechanism. Among all combinations, aluminum in water is found to
have the highest discharge performance with discharge potentials ranging from
716 to 744 mV, regardless of discharge current.
Keywords:
Aluminum based battery; electrolyte activation battery; emergency power
generation
ABSTRAK
Bateri yang boleh diaktifkan dengan elektrolit adalah penting semasa kecemasan bencana alam, seperti banjir dan ribut taufan. Namun demikan, kadar kakisan yang tinggi akan menjejaskan prestasi nyahcas bateri dan prestasi tersebut sangat dipengaruhi oleh jenis elektrolit dan arus nyahcas. Dalam kajian ini, kadar kakisan dan prestasi nyacas aloi aluminium komersial Al 6061 yang digunakan sebagai anod dalam bateri diuji pada kadar arus nyacas yang berlainan (0.001, 0.01 dan 1 mA) dan dalam elektrolit yang berlainan, yakni, air garam, urea dan air suling. Keputusan mikroskopi elektron imbasan menunjukkan elektrod di dalam air garam mengalami kakisan yang paling tinggi, diikuti dengan urea dan air suling. Kombinasi elektrod-elektrolit ini dikaji lebih lanjut dengan pengkutuban potentiodinamik, penyahcas galvanostatik dan spektroskopi impedans elektrokimia untuk memahami keupayaan nyahcas, kelakuan nyahcas dan mekanisme kakisan. Antara semua kombinasi, aluminium di dalam air didapati menunjukkan prestasi nyahcas yang tertinggi dalam julat 716 to 744 mV, tanpa mengira arus nyahcas.
Kata kunci: Bateri berasakan aluminum; bateri yang diaktifkan dengan elektrolit; penjana kuasa kecemasan
RUJUKAN
Abdulrehman, T., Yousif,
Z.A., Abdulkareem, I., Abdulla, A.M. & Haik, Y.
2015. Enhancing the performance of Mg e Al brine water batteries using
conductive polymer-PEDOT: PSS. Renewable
Energy 82: 125-130.
Brantley, W., Berzins, D., Iijima, M., Tufekçi, E. & Cai, Z. 2017. 1 –
Structure/Property Relationships in Orthodontic Alloys. Orthodontic
Applications of Biomaterials: A Clinical Guide. Elsevier: Woodhead Publishing.
Deng, M., Wang, R., Feng, Y., Wang, N. & Wang, L.
2016. Corrosion and discharge performance of Mg − 9 % Al − 2 . 5 % Pb alloy as anode for
seawater activated battery. Transactions
of Nonferrous Metals Society of China 26(8): 2144-2151.
Feng, Y., Xiong, W., Zhang,
J., Wang, R. & Wang, N. 2016. Electrochemical discharge performance of the
Mg – Al – Pb – Ce – Y alloy as the anode for Mg - air
batteries. Journal of Materials Chemistry
A: Materials for Energy and Sustainability 4(22): 8658-8668.
Hongyang, Z., Pei, B. & Dongying,
J.U. 2009. Electrochemical performance of magnesium alloy and its application
on the sea water battery. Journal of
Environmental Sciences 21: S88-S91.
Ilya, J., Chea, C.C., Featonby, D. & Vitkoczi, F.
2017. Preliminary study on aluminum-air battery applying disposable soft drink
cans and Arabic gum polymer. IOP
Conference Series: Materials Science
and Engineering 237(1): 012039.
Kim, Y., Kim, G.T., Jeong,
S., Dou, X., Geng, C., Kim, Y. & Passerini, S. 2019. Large-scale stationary energy storage:
Seawater batteries with high rate and reversible performance. Energy Storage Materials 16: 56-64.
Kim, Y., Kim, H., Park, S., Seo,
I. & Kim, Y. 2016. Na ion- conducting ceramic as solid electrolyte for
rechargeable seawater batteries. Electrochimica Acta 191: 1-7.
Kobashi, H. & Oshitani,
M. 2009. Primary batteries - reserve systems | Seawater Activated Batteries:
Magnesium. Encyclopedia of
Electrochemical Power Sources. pp. 156-163.
Kushima, A., Koido, T.,
Fujiwara, Y., Kuriyama, N., Kusumi,
N. & Li, J. 2015. Charging/discharging nanomorphology asymmetry and rate- dependent capacity degradation in Li − oxygen
battery. Nano letters 15(12):
8260-8265.
Leisegang, T., Meutzner,
F., Zschornak, M., Münchgesang,
W., Schmid, R., Nestler, T.
& Meyer, D.C. 2019. The aluminum-ion battery: A sustainable and seminal
concept? Frontiers in Chemistry 7:
268.
Li, J., Wan, K., Jiang, Q., Sun, H., Li, Y. & Hou, B. 2016. Corrosion and discharge behaviors of Mg-Al-Zn
and Mg-Al-Zn-in alloys as anode materials. Metal 6(3): 65.
Li, Q. & Bjerrum, N.J. 2002. Aluminum as anode for
energy storage and conversion: A review. Journal
of Power Sources 110(1): 1-10.
Liu, Q., Yan, Z., Wang, E., Wang, S. & Sun, G.
2017. A high-specific-energy magnesium/water battery for full-depth ocean
application. International Journal of
Hydrogen Energy 42(36): 23045-23053.
Mokhtar, M., Majlan, E.H., Ramli, W., Daud, W., Ahmad, A.
& Tasirin, S.M. 2018. Effect of ZnO filler on PVA-alkaline solid polymer electrolyte for
aluminum-air battery applications. Journal
of The Electrochemical Society 165(11): 2483-2492.
Mokhtar, M., Zainal, M., Talib,
M., Herianto, E., Masrinda,
S., Muhammad, W. & Sahari, J. 2015. Journal of
industrial and engineering chemistry recent developments in materials for
aluminum - air batteries: A review. Journal
of Industrial and Engineering Chemistry 32: 1-20.
Mroczkowska, K.M., Antończak,
A.J. & Gąsiorek, J. 2019. The corrosion
resistance of aluminum alloy modified by laser radiation. Coatings 9(10): 672.
Nikseresht, Z., Karimzadeh,
F., Golozar, M.A. & Heidarbeigy,
M. 2010. Effect of heat treatment on microstructure and corrosion behavior of
Al6061 alloy weldment. Materials and
Design 31(5): 2643-2648.
Pino, M., Herranz,
D., Chacón, J., Fatás, E.
& Ocón, P. 2016. Carbon treated commercial aluminium alloys as anodes for aluminium-air
batteries in sodium chloride electrolyte. Journal
of Power Sources 326: 296-302.
Pino, M., Chacón, J., Fatás, E. & Ocón, P.
2015. Performance of commercial aluminium alloys as
anodes in gelled electrolyte aluminium-air batteries. Journal of Power Sources 299:
195-201.
Raptis, D., Seferlis,
A.K., Mylona, V., Politis,
C. & Lianos, P. 2018. Electrochemical hydrogen
and electricity production by using anodes made of commercial aluminum. International Journal of Hydrogen Energy 44(3): 1359-1365.
Ropital, F. 2011. Advances in Clean Hydrocarbon Fuel Processing: Science and Technology. Environmental
Degradation in Hydrocarbon Fuel Processing Plant: Issues and Mitigation. Elsevier: Woodhead Publishing Limited.
Shi, Y., Peng, C., Feng, Y., Wang, R. & Wang, N.
2017a. Microstructure and electrochemical corrosion behavior of extruded Mg–Al–Pb–La alloy as anode for seawater-activated battery. Materials and Design 124: 24-33.
Shi, Y., Peng, C., Feng, Y., Wang, R. & Wang, N.
2017b. Enhancement of discharge properties of an extruded Mg-Al-Pb anode for seawater-activated battery by lanthanum addition. Journal of Alloys and Compounds 721:
392-404.
Starostin, M., Shter, G.E.
& Grader, G.S. 2016. Corrosion of aluminum alloys Al 6061 and Al 2024 in
ammonium nitrate-urea solution. Materials
and Corrosion 67(4): 387-395.
Tang, J., Li, J., Wang, H., Wang, Y. & Chen, G.
2019. in-situ monitoring and analysis
of the pitting corrosion of carbon steel by acoustic emission. Applied Sciences 9: 1-19.
Tang, Y., Zheng, S., Xu, Y., Xiao, X., Xue, H. & Pang, H. 2018. Advanced batteries based on
manganese dioxide and its composites. Energy
Storage Materials 12: 284-309.
Vuorilehto, K. 2003. An environmentally friendly
water-activated manganese dioxide battery. Journal
of Applied Electrochemistry 33: 15-21.
Wang, N., Wang, R., Peng, C. & Feng, Y. 2014a.
Enhancement of the discharge performance of AP65 magnesium alloy anodes by hot
extrusion. Corrosion Science 81:
85-95.
Wang, N.G., Wang, R.C., Peng, C.Q., Hu, C.W., Feng, Y.
& Peng, B. 2014b. Research progress of magnesium anodes and their
applications in chemical power sources. Oral
Oncology 50(10): 2427-2439.
Wen, L., Yu, K., Xiong, H.,
Dai, Y., Yang, S., Qiao, X. & Fan, S. 2016.
Composition optimization and electrochemical properties of Mg-Al-Pb-(Zn) alloys as anodes for seawater activated battery. Electrochimica Acta 194:
40-51.
Yu, K., Xiong, H., Wen, L.,
Dai, Y., Yang, S., Fan, S. & Qiao, X. 2015.
Discharge behavior and electrochemical properties of Mg í Al í Sn alloy anode
for seawater activated battery. Transactions
of Nonferrous Metals Society of China 25(4): 1234-1240.
Zhang, Y., Wu, Y., Chen, D., Wang, R., Li, D., Guo, C. & Nash, P. 2017. Surface & coatings
technology micro-structures and growth mechanisms of plasma electrolytic
oxidation coatings on aluminium at different current
densities. Surface & Coatings
Technology 321: 236-246.
*Pengarang untuk surat-menyurat; email: kllim@ukm.edu.my
|