Sains Malaysiana 49(12)(2020): 3243-3254

http://dx.doi.org/10.17576/jsm-2020-4912-35

 

Microstructure and Discharge Performance of Aluminum Al 6061 Alloy as Anode for Electrolyte Activated Battery

(Mikrostruktur dan Prestasi Nyahcas Aloi Aluminium Al 6061 sebagai Anod untuk Bateri Teraktif Elektrolit)

 

PRIYATHASHINY PONGALI1, WAI YIN WONG1, ALVIE SIN VOI LO2, SAMMY LAP IP CHAN3 & KEAN LONG LIM1*

 

1Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia

 

3School of Materials Science and Engineering, University of New South Wales, New South Wales, 2052, Australia

 

Diserahkan: 17 Ogos 2020/Diterima: 11 September 2020

 

ABSTRACT

Electrolyte activated battery finds its important use during natural disaster emergencies, such as floods and typhoons. Nevertheless, high corrosion rate will deteriorate the discharge performance of the battery and it is influenced by the type of electrolyte and discharge current. In this study, the corrosion and discharge performance of a commercial Al 6061 aluminum alloy as an anode are investigated at different discharge currents (0.001, 0.01, and 1 mA) and in different electrolytes, namely salt water, urea, and distilled water. Scanning electron microscopy results show that electrode in salt water has the most serious corrosion, followed by that of in urea and in distilled water. These electrode-electrolyte combinations are further investigated with potentiodynamic polarization, galvanostatic discharge, and electrochemical impedance spectroscopy (EIS) to understand their discharge potential, discharge behavior, and corrosion mechanism. Among all combinations, aluminum in water is found to have the highest discharge performance with discharge potentials ranging from 716 to 744 mV, regardless of discharge current.

 

Keywords: Aluminum based battery; electrolyte activation battery; emergency power generation

 

ABSTRAK

Bateri yang boleh diaktifkan dengan elektrolit adalah penting semasa kecemasan bencana alam, seperti banjir dan ribut taufan. Namun demikan, kadar kakisan yang tinggi akan menjejaskan prestasi nyahcas bateri dan prestasi tersebut sangat dipengaruhi oleh jenis elektrolit dan arus nyahcas. Dalam kajian ini, kadar kakisan dan prestasi nyacas aloi aluminium komersial Al 6061 yang digunakan sebagai anod dalam bateri diuji pada kadar arus nyacas yang berlainan (0.001, 0.01 dan 1 mA) dan dalam elektrolit yang berlainan, yakni, air garam, urea dan air suling. Keputusan mikroskopi elektron imbasan menunjukkan elektrod di dalam air garam mengalami kakisan yang paling tinggi, diikuti dengan urea dan air suling. Kombinasi elektrod-elektrolit ini dikaji lebih lanjut dengan pengkutuban potentiodinamik, penyahcas galvanostatik dan spektroskopi impedans elektrokimia untuk memahami keupayaan nyahcas, kelakuan nyahcas dan mekanisme kakisan. Antara semua kombinasi, aluminium di dalam air didapati menunjukkan prestasi nyahcas yang tertinggi dalam julat 716 to 744 mV, tanpa mengira arus nyahcas.

 

Kata kunci: Bateri berasakan aluminum; bateri yang diaktifkan dengan elektrolit; penjana kuasa kecemasan

 

RUJUKAN

Abdulrehman, T., Yousif, Z.A., Abdulkareem, I., Abdulla, A.M. & Haik, Y. 2015. Enhancing the performance of Mg e Al brine water batteries using conductive polymer-PEDOT: PSS. Renewable Energy 82: 125-130.

Brantley, W., Berzins, D., Iijima, M., Tufekçi, E. & Cai, Z. 2017. 1 – Structure/Property Relationships in Orthodontic Alloys. Orthodontic Applications of Biomaterials: A Clinical Guide. Elsevier: Woodhead Publishing.

Deng, M., Wang, R., Feng, Y., Wang, N. & Wang, L. 2016. Corrosion and discharge performance of Mg − 9 % Al − 2 . 5 % Pb alloy as anode for seawater activated battery. Transactions of Nonferrous Metals Society of China 26(8): 2144-2151.

Feng, Y., Xiong, W., Zhang, J., Wang, R. & Wang, N. 2016. Electrochemical discharge performance of the Mg – Al – Pb – Ce – Y alloy as the anode for Mg - air batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability 4(22): 8658-8668.

Hongyang, Z., Pei, B. & Dongying, J.U. 2009. Electrochemical performance of magnesium alloy and its application on the sea water battery. Journal of Environmental Sciences 21: S88-S91.

Ilya, J., Chea, C.C., Featonby, D. & Vitkoczi, F. 2017. Preliminary study on aluminum-air battery applying disposable soft drink cans and Arabic gum polymer. IOP Conference Series: Materials Science and Engineering 237(1): 012039.

Kim, Y., Kim, G.T., Jeong, S., Dou, X., Geng, C., Kim, Y. & Passerini, S. 2019. Large-scale stationary energy storage: Seawater batteries with high rate and reversible performance. Energy Storage Materials 16: 56-64.

Kim, Y., Kim, H., Park, S., Seo, I. & Kim, Y. 2016. Na ion- conducting ceramic as solid electrolyte for rechargeable seawater batteries. Electrochimica Acta 191: 1-7.

Kobashi, H. & Oshitani, M. 2009. Primary batteries - reserve systems | Seawater Activated Batteries: Magnesium. Encyclopedia of Electrochemical Power Sources. pp. 156-163.

Kushima, A., Koido, T., Fujiwara, Y., Kuriyama, N., Kusumi, N. & Li, J. 2015. Charging/discharging nanomorphology asymmetry and rate- dependent capacity degradation in Li − oxygen battery. Nano letters 15(12): 8260-8265.

Leisegang, T., Meutzner, F., Zschornak, M., Münchgesang, W., Schmid, R., Nestler, T. & Meyer, D.C. 2019. The aluminum-ion battery: A sustainable and seminal concept? Frontiers in Chemistry 7: 268.

Li, J., Wan, K., Jiang, Q., Sun, H., Li, Y. & Hou, B. 2016. Corrosion and discharge behaviors of Mg-Al-Zn and Mg-Al-Zn-in alloys as anode materials. Metal 6(3): 65.

Li, Q. & Bjerrum, N.J. 2002. Aluminum as anode for energy storage and conversion: A review. Journal of Power Sources 110(1): 1-10.

Liu, Q., Yan, Z., Wang, E., Wang, S. & Sun, G. 2017. A high-specific-energy magnesium/water battery for full-depth ocean application. International Journal of Hydrogen Energy 42(36): 23045-23053.

Mokhtar, M., Majlan, E.H., Ramli, W., Daud, W., Ahmad, A. & Tasirin, S.M. 2018. Effect of ZnO filler on PVA-alkaline solid polymer electrolyte for aluminum-air battery applications. Journal of The Electrochemical Society 165(11): 2483-2492.

Mokhtar, M., Zainal, M., Talib, M., Herianto, E., Masrinda, S., Muhammad, W. & Sahari, J. 2015. Journal of industrial and engineering chemistry recent developments in materials for aluminum - air batteries: A review. Journal of Industrial and Engineering Chemistry 32: 1-20.

Mroczkowska, K.M., Antończak, A.J. & Gąsiorek, J. 2019. The corrosion resistance of aluminum alloy modified by laser radiation. Coatings 9(10): 672.

Nikseresht, Z., Karimzadeh, F., Golozar, M.A. & Heidarbeigy, M. 2010. Effect of heat treatment on microstructure and corrosion behavior of Al6061 alloy weldment. Materials and Design 31(5): 2643-2648.

Pino, M., Herranz, D., Chacón, J., Fatás, E. & Ocón, P. 2016. Carbon treated commercial aluminium alloys as anodes for aluminium-air batteries in sodium chloride electrolyte. Journal of Power Sources 326: 296-302.

Pino, M., Chacón, J., Fatás, E. & Ocón, P. 2015. Performance of commercial aluminium alloys as anodes in gelled electrolyte aluminium-air batteries. Journal of Power Sources 299: 195-201.

Raptis, D., Seferlis, A.K., Mylona, V., Politis, C. & Lianos, P. 2018. Electrochemical hydrogen and electricity production by using anodes made of commercial aluminum. International Journal of Hydrogen Energy 44(3): 1359-1365.

Ropital, F. 2011. Advances in Clean Hydrocarbon Fuel Processing: Science and Technology. Environmental Degradation in Hydrocarbon Fuel Processing Plant: Issues and Mitigation. Elsevier: Woodhead Publishing Limited.

Shi, Y., Peng, C., Feng, Y., Wang, R. & Wang, N. 2017a. Microstructure and electrochemical corrosion behavior of extruded Mg–Al–Pb–La alloy as anode for seawater-activated battery. Materials and Design 124: 24-33.

Shi, Y., Peng, C., Feng, Y., Wang, R. & Wang, N. 2017b. Enhancement of discharge properties of an extruded Mg-Al-Pb anode for seawater-activated battery by lanthanum addition. Journal of Alloys and Compounds 721: 392-404.

Starostin, M., Shter, G.E. & Grader, G.S. 2016. Corrosion of aluminum alloys Al 6061 and Al 2024 in ammonium nitrate-urea solution. Materials and Corrosion 67(4): 387-395.

Tang, J., Li, J., Wang, H., Wang, Y. & Chen, G. 2019. in-situ monitoring and analysis of the pitting corrosion of carbon steel by acoustic emission. Applied Sciences 9: 1-19.

Tang, Y., Zheng, S., Xu, Y., Xiao, X., Xue, H. & Pang, H. 2018. Advanced batteries based on manganese dioxide and its composites. Energy Storage Materials 12: 284-309.

Vuorilehto, K. 2003. An environmentally friendly water-activated manganese dioxide battery. Journal of Applied Electrochemistry 33: 15-21.

Wang, N., Wang, R., Peng, C. & Feng, Y. 2014a. Enhancement of the discharge performance of AP65 magnesium alloy anodes by hot extrusion. Corrosion Science 81: 85-95.

Wang, N.G., Wang, R.C., Peng, C.Q., Hu, C.W., Feng, Y. & Peng, B. 2014b. Research progress of magnesium anodes and their applications in chemical power sources. Oral Oncology 50(10): 2427-2439.

Wen, L., Yu, K., Xiong, H., Dai, Y., Yang, S., Qiao, X. & Fan, S. 2016. Composition optimization and electrochemical properties of Mg-Al-Pb-(Zn) alloys as anodes for seawater activated battery. Electrochimica Acta 194: 40-51.

Yu, K., Xiong, H., Wen, L., Dai, Y., Yang, S., Fan, S. & Qiao, X. 2015. Discharge behavior and electrochemical properties of Mg í Al í Sn alloy anode for seawater activated battery. Transactions of Nonferrous Metals Society of China 25(4): 1234-1240.

Zhang, Y., Wu, Y., Chen, D., Wang, R., Li, D., Guo, C. & Nash, P. 2017. Surface & coatings technology micro-structures and growth mechanisms of plasma electrolytic oxidation coatings on aluminium at different current densities. Surface & Coatings Technology 321: 236-246.   

 

*Pengarang untuk surat-menyurat; email: kllim@ukm.edu.my

   

 

sebelumnya