Sains
Malaysiana 50(10)(2021): 3107-3126
http://doi.org/10.17576/jsm-2021-5010-23
Keterlarutan
Selulosa, Pelarut dan Produk Selulosa yang Dijana Semula: Suatu Ulasan
(Cellulose
Solubility, Solvent and Their Regenerated Cellulose Products: A Review)
KUSHAIRI
MOHD SALLEH1, SARANI ZAKARIA1*, MARHAINI MOSTAPHA1,
UMAR ADLI AMRAN1, WAN NOOR AIDAWATI WAN NADHARI2 &
NUR AIN IBRAHIM1
1Bioresource & Biorefinery
Research Group, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Malaysian Institute of Chemical and
Bioengineering Technology, Universiti Kuala Lumpur, Lot 1988 Kawasan
Perindustrian Bandar Vendor, Taboh Naning, 78000 Alor Gajah, Melaka, Malaysia
Diserahkan:
2 Disember 2020/Diterima: 22 Februari 2021
ABSTRAK
Selulosa
ialah polimer semula jadi yang boleh diperbaharui dan biasanya ditemui di dalam
dinding sel tumbuhan. Interaksi hidrofobik yang kompleks serta sifat amfifilik
menyebabkan ia sukar dilarutkan dan seterusnya membataskan penggunaannya secara
menyeluruh. Pemahaman kepada struktur kimia dan fiziknya membolehkan proses
pelarutan berlaku dengan penggunaan jenis pelarut yang bersesuaian. Namun,
pelarut sedia ada bukanlah yang terbaik dan efisien terhadap pelarutan
selulosa. Sehingga kini, kajian kepada jenis pelarut dan mekanisme pelarutan
masih menjadi topik utama penyelidikan. Selulosa yang terlarut pula boleh
dijana semula kepada produk fizikal yang lain, contohnya hidrogel, aerogel,
kriogel dan xerogel.
Produk yang dijana semula daripada selulosa yang terlarut boleh diacukan kepada
pelbagai bentuk yang mempunyai struktur tulang yang kuat dan bersifat
hidrofilik, bioserasi dan terbiodegradasi. Potensi dalam aplikasi yang pelbagai
serta terbukti sebagai alternatif kepada polimer sintetik menjadikan polimer
semula jadi ini berpotensi besar dalam bidang sains dan teknologi. Maka, ulasan
kajian terhadap selulosa, jenis pelarut serta produk yang dijana semula
daripadanya menjadi fokus dalam penulisan makalah ini.
Kata
kunci: Pelarutan; pelarut tak-terbitan; pelarut terbitan; produk terjana semula
ABSTRACT
Cellulose
is a naturally occurring polymer that is renewable and usually found in the
plants' cell wall. Cellulose complex hydrophobic interactions and amphiphilic
character render them difficult to be dissolved and consequently restricting
total utilization. Understanding on their chemical structure and physical
behaviour, introduction to suitable solvent allowing dissolution process to
occur. Nonetheless, the current solvents are not the best and not as efficient
as intended towards cellulose dissolution. Till date, research on solvent types
and their reaction mechanism are still explored and characterized. The
dissolved cellulose can be regenerated to different physical products such as
hydrogel, aerogel, cryogel, and xerogel. The regenerated products from
dissolved cellulose can be moulded into various shape with a strong skeletal
structure and usually hydrophilic, biocompatible, and can be biodegraded.
Cellulose potentials in various applications are proven as an excellent
alternative to the synthetic polymer, making this naturally occurring polymer
has huge potentials in science and technology. Therefore, a review on
cellulose, different types of solvent and regenerated products from cellulose-based
materials are the main focus in this manuscript.
Keywords:
Derivatizing solvent; dissolving; non-derivatizing solvent; regenerated
products
RUJUKAN
Abedi-Koupai,
J., Sohrab, F. & Swarbrick, G. 2008. Evaluation of hydrogel application on
soil water retention characteristics. J. Plant Nutr. 31: 317-331.
Atalla, R.H. & Isogai, A. 2010. Celluloses. In Comprehensive
Natural Products II: Chemistry and Biology, edited by Mander, L. & Liu,
H.W. Elsevier. pp. 493-539.
Beaumont, M., König, J., Opietnik, M., Potthast, A. & Rosenau, T.
2017. Drying of a cellulose II gel: Effect of physical modification and
redispersibility in water. Cellulose 24: 1199-1209.
Błaszczyński, T., Ślosarczyk, A. & Morawski, M. 2013.
Synthesis of silica aerogel by supercritical drying method. Procedia Eng.
57: 200-206.
Bortolin, A., Aouada, F.A., Mattoso, L.H.C. & Ribeiro, C. 2013.
Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: Evidence of
synergistic effects for the slow release of fertilizers. J. Agric. Food Chem.
61: 7431-7439.
Buchtová, N. & Budtova, T. 2016. Cellulose aero-, cryo- and xerogels:
Towards understanding of morphology control. Cellulose 23: 2585-2595.
Buwalda, S.J., Boere, K.W.M., Dijkstra, P.J., Feijen, J., Vermonden, T.
& Hennink, W.E. 2014. Hydrogels in a historical perspective: From simple
networks to smart materials. J. Control Release 190: 254-273.
Cai, J. & Zhang, L. 2005. Rapid dissolution of cellulose in LiOH/urea
and NaOH/urea aqueous solutions. Macromol. Biosci. 5: 539-548.
Cai, J., Zhang, L., Liu, S., Liu, Y., Xu, X., Chen, X., Chu, B., Guo, X.,
Xu, J., Cheng, H., Han, C.C. & Kuga, S. 2008. Dynamic self-assembly induced
rapid dissolution of cellulose at low temperatures. Macromolecules 41:
9345-9351.
Calcagnile, P., Sibillano, T., Giannini, C., Sannino, A. & Demitri, C.
2019. Biodegradable poly (lactic acid)/cellulose-based superabsorbent hydrogel
composite material as water and fertilizer reservoir in agricultural
applications. J. Appl. Polym. Sci. 136(21): 47546.
Capanema, N.S.V., Mansur, A.A.P., Jesus, A.C.D., Carvalho, S.M., De
Oliveira, L.C. & Mansur, H.S. 2018. Superabsorbent crosslinked
carboxymethyl cellulose-PEG hydrogels for potential wound dressing
applications. Int. J. Biol. Macromol. 106: 1218-1234.
Cuissinat, C. & Navard, P. 2008. Swelling and dissolution of
cellulose, Part III: Plant fibres in aqueous systems. Cellulose 15:
67-74.
Cuissinat, C. & Navard, P. 2006. Swelling and dissolution of cellulose
Part II : Free floating cotton and wood fibres in NaOH – water –
additives systems. Macromol. Symp. 244: 19-30.
Cuissinat, C., Navard, P. & Heinze, T. 2008a. Swelling and dissolution
of cellulose. Part IV: Free floating cotton and wood fibres in ionic liquids. Carbohydr.
Polym. 72: 590-596.
Cuissinat, C., Navard, P. & Heinze, T. 2008b. Swelling and dissolution
of cellulose, Part V: Cellulose derivatives fibres in aqueous systems and ionic
liquids. Cellulose 15: 75-80.
Davidson, G.F. 1934. 12 - The dissolution of chemically modified cotton
cellulose in alkaline solutions: Part I - In solutions of sodium hydroxide,
particularly at temperatures below the normal. J. Text. Inst. Trans. 25:
T174-T196.
Davis, W.E., King, A.J., Barry, A.J. & Peterson, F.C. 1943. X-ray
studies of reactions of cellulose in non-aqueous systems. II. Interaction of
cellulose and primary amines. J. Am. Chem. Soc. 65: 1294-1299.
De Silva, R., Vongsanga, K., Wang, X. & Byrne, N. 2016. Understanding
key wet spinning parameters in an ionic liquid spun regenerated cellulosic
fibre. Cellulose 23: 2741-2751.
Delbecq, F., Wang, Y., Muralidhara, A., El Ouardi, K.E., Marlair, G. &
Len, C. 2018. Hydrolysis of hemicellulose and derivatives - A review of recent
advances in the production of furfural. Front. Chem. 6: 146.
Demitri, C., Scalera, F., Madaghiele, M., Sannino, A. & Maffezzoli, A.
2013. Potential of cellulose-based superabsorbent hydrogels as water reservoir
in agriculture. Int. J. Polym. Sci. 2013: 435073.
El-Sherbiny, I. & Yacoub, M. 2013. Hydrogel scaffolds for tissue
engineering: Progress and challenges. Glob. Cardiol. Sci. Pract. 2013:
316-342.
El Seoud, O.A. & Heinze, T. 2005. Organic esters of cellulose: New
perspectives for old polymers. Adv. Polym. Sci. 186: 103-149.
Elbarbary, A.M. & Ghobashy, M.M. 2017. Controlled release fertilizers
using superabsorbent hydrogel prepared by gamma radiation. Radiochim. Acta 105: 865-876.
Feksa, L.R., Troian, E.A., Muller, C.D., Viegas, F., Machado, A.B. &
Rech, V.C. 2018. Hydrogels for biomedical applications. In Nanostructures
for the Engineering of Cells, Tissues and Organs: From Design to Applications, edited
by Grumezescu, A.M. William Andrew Publishing. pp. 403-438.
Gan, S., Zakaria, S., Salleh, K.M., Anuar, N.I.S., Moosavi, S. & Chen,
R.S. 2020. An improved physico-mechanical performance of macropores membrane
made from synthesized cellulose carbamate. Int. J. Biol. Macromol. 158:
552-561.
Gavillon, R. & Budtova, T. 2007. Aerocellulose: New highly porous
cellulose prepared from cellulose−NaOH aqueous solutions. Biomacromolecules 9: 269-277.
Glasser, W.G. 2008. Cellulose and associated heteropolysaccharides. Glycoscience.
Berlin, Heidelberg: Springer-Verlag. p. 1473.
van de ven, T.G.M. & Godbout, L. 2013. Cellulose - Fundamental Aspects. https://www.intechopen.com/books/2326.
Gou, L., Xiang, M. & Ni, X. 2020. Development of wound therapy in
nursing care of infants by using injectable gelatin-cellulose composite
hydrogel incorporated with silver nanoparticles. Mater. Lett. 277: 128340.
Graenacher, C. 1934. Cellulose Solution. US1943176A.
Gulrez, S.K.H., Al-Assaf, S. & Phillips, G.O. 2003. Hydrogels: Methods
of preparation, characterisation and applications. Prog. Mol. Environ.
Bioeng. 51: 117-150.
Gun’ko, V.M., Savina, I.N. & Mikhalovsky, S.V. 2013. Cryogels:
Morphological, structural and adsorption characterisation. Adv. Colloid
Interface Sci. 187-188: 1-46.
Guo, Y., Zhou, J., Wang, Y., Zhang, L. & Lin, X. 2010. An efficient
transformation of cellulose into cellulose carbamates assisted by microwave
irradiation. Cellulose 17: 1115-1125.
Heinze, T. & Koschella, A. 2005. Solvents applied in the field of
cellulose chemistry: A mini review. Polímeros 15: 84-90.
Hixon, K.R., Lu, T. & Sell, S.A. 2017. A comprehensive review of
cryogels and their roles in tissue engineering applications. Acta Biomater. 62: 29-41.
Hoffman, A.S. 2012. Hydrogels for biomedical applications. Adv. Drug
Deliv. Rev. 64: 18-23.
Innerlohinger, J., Weber, H.K. & Kraft, G. 2006. Aerocellulose:
Aerogels and aerogel-like materials made from cellulose. Macromol. Symp. 244:
126-135.
Itagaki, H., Tokai, M. & Kondo, T. 1997. Physical gelation process for
cellulose whose hydroxyl groups are regioselectively substituted by fluorescent
groups. Polymer (Guildf). 38: 4201-4205.
McNaught, A.D. & Wilkinson, A. 1997. Coprecipitation. Compendium of Chemical Terminology: IUPAC
Recommendations. 2nd ed. Blackwell Science. p. 336.
Jeddi, M.K. & Mahkam, M. 2019. Magnetic nano carboxymethyl
cellulose-alginate/chitosan hydrogel beads as biodegradable devices for
controlled drug delivery. Int. J. Biol. Macromol. 135: 829-838.
Karadagli, I., Milow, B., Ratke, L. & Schulz, B. 2012. Synthesis and
characterization of highly porous cellulose aerogels for textiles applications.
https://elib.dlr.de/78416/.
Khan, S., Ul-islam, M., Ikram, M., Ul, S., Wajid, M., Israr, M., Hyun, J.,
Yoon, S. & Kon, J. 2018. Preparation and structural characterization of
surface modified microporous bacterial cellulose scaffolds: A potential
material for skin regeneration applications in vitro and in vivo. Int. J. Biol. Macromol. 117: 1200-1210.
Khattab, T.A., Dacrory, S., Abou-Yousef, H. & Kamel, S. 2019. Development
of microporous cellulose-based smart xerogel reversible sensor via freeze
drying for naked-eye detection of ammonia gas. Carbohydr. Polym. 210:
196-203.
Kihlman, M., Medronho, B.F., Romano, A.L., Germgård, U. & Lindman, B.
2013. Cellulose dissolution in an alkali based solvent: Influence of additives
and pretreatments. J. Braz. Chem. Soc. 24: 295-303.
Kistler, S.S. 1932. Coherent expanded aerogels. J. Phys. Chem. 63:
52-64.
Klemm, D., Philipp, B., Heinze, T., Heinze, U. & Wagenknecht, W. 1998. Comprehensive
Cellulose Chemistry: Fundamentals and Analytical Methods, Volume 1. Wiley‐VCH
Verlag GmbH.
Klvana, D., Chaouki, J., Repellin-Lacroix, M. & Pajonk, G. 1989. A new
method of preparation of aerogel-like materials using a freeze-drying process. Le
J. Phys. Colloq. 50(C4): C4-29-C4-32.
Kondo, T. 1997. The relationship between intramolecular hydrogen bonds and
certain physical properties of regioselectively substituted cellulose
derivatives. J. Polym. Sci. Part B Polym. Phys. 35: 717-723.
Kono, H. & Fujita, S. 2012. Biodegradable superabsorbent hydrogels
derived from cellulose by esterification crosslinking with
1,2,3,4-butanetetracarboxylic dianhydride. Carbohydr. Polym. 87:
2582-2588.
Kumar, A. 2016. Supermacroporous Cryogels: Biomedical and
Biotechnological Applications. New Jersey: CRC Press.
Kumar, A., Mishra, R., Reinwald, Y. & Bhat, S. 2010. Cryogels:
Freezing unveiled by thawing. Mater. Today 13: 42-44.
Labafzadeh, S.R. 2015. Cellulose-based materials. Academic Dissertation.
University of Helsinki (Unpublished).
Leipner, H., Fischer, S., Brendler, E. & Voigt, W. 2000. Structural
changes of cellulose dissolved in molten salt hydrates. Macromol. Chem.
Phys. 201: 2041-2049.
Liao, Q., Su, X., Zhu, W., Hua, W., Qian, Z., Liu, L. & Yao, J. 2016.
Flexible and durable cellulose aerogels for highly effective oil/water
separation. RSC Adv. 6: 63773-63781.
Lin, R., Li, A., Zheng, T., Lu, L. & Cao, Y. 2015. Hydrophobic and
flexible cellulose aerogel as an efficient, green and reusable oil sorbent. RSC
Adv. 5: 82027-82033.
Lindman, B., Karlström, G. & Stigsson, L. 2010. On the mechanism of
dissolution of cellulose. J. Mol. Liq. 156: 76-81.
Liu, Q., Liu, J., Qin, S., Pei, Y., Zheng, X. & Tang, K. 2020. High
mechanical strength gelatin composite hydrogels reinforced by cellulose
nanofibrils with unique beads-on-a-string morphology. Int. J. Biol.
Macromol. 164: 1776-1784.
Lue, A., Liu, Y., Zhang, L. & Potthas, A. 2011. Light scattering study
on the dynamic behaviour of cellulose inclusion complex in LiOH/urea aqueous
solution. Polymer (Guildf). 52: 3857-3864.
Luo, X. & Zhang, L. 2013. New solvents and functional materials
prepared from cellulose solutions in alkali/urea aqueous system. Food Res.
Int. 52: 387-400.
Maharjan, B., Park, J., Kaliannagounder, V.K., Awasthi, G.P., Joshi, M.K.,
Park, C.H. & Kim, C.S. 2021. Regenerated cellulose nanofiber reinforced
chitosan hydrogel scaffolds for bone tissue engineering. Carbohydr. Polym. 251:
117023.
Medronho, B., Romano, A., Miguel, M.G., Stigsson, L. & Lindman, B.
2012. Rationalizing cellulose (in)solubility: Reviewing basic physicochemical
aspects and role of hydrophobic interactions. Cellulose 19: 581-587.
Mi, Q.Y., Ma, S.R., Yu, J., He, J.S. & Zhang, J. 2016. Flexible and
transparent cellulose aerogels with uniform nanoporous structure by a
controlled regeneration process. ACS Sustain. Chem. Eng. 4: 656-660.
Mirtaghavi, A., Baldwin, A., Tanideh, N., Zarei, M., Muthuraj, R., Cao,
Y., Zhao, G., Geng, J., Jin, H. & Luo, J. 2020. Crosslinked porous
three-dimensional cellulose nano fi bers-gelatine biocomposite scaffolds for
tissue regeneration. Int. J. Biol. Macromol. 164: 1949-1959.
Moon, R.J., Martini, A., Nairn, J., Simonsen, J. & Youngblood, J.
2011. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chemical Society Reviews 40: 3941-3994.
Nagel, M.C.V., Koschella, A., Voiges, K., Mischnick, P. & Heinze, T.
2010. Homogeneous methylation of wood pulp cellulose dissolved in
LiOH/urea/H2O. Eur. Polym. J. 46: 1726-1735.
O’Sullivan, A.C. 1997. Cellulose: The structure slowly unravels. Cellulose 4: 173-207.
Padzil, F.N.M., Gan, S., Zakaria, S., Mohamad, S.F., Mohamed, N.H., Seo,
Y.B. & Ellis, A.V. 2018. Increased solubility of plant core pulp cellulose
for regenerated hydrogels through electron beam irradiation. Cellulose 25: 4993-5006.
Padzil, F.N.M., Zakaria, S., Chia, C.H., Jaafar, S.N.S., Kaco, H., Gan, S.
& Ng, P. 2015. Effect of acid hydrolysis on regenerated kenaf core membrane
produced using aqueous alkaline–urea systems. Carbohydr. Polym. 124:
164-171.
Pal, K., Banthia, A. & Majumdar, D. 2009. Polymeric hydrogels:
Characterization and biomedical applications. Des. Monomers Polym. 12:
197-220.
Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A. & Johnson, D.K.
2010. Cellulose crystallinity index: Measurement techniques and their impact on
interpreting cellulase performance. Biotechnol. Biofuels 3: 1-10.
Payen, M. 1838. Mémoire sur la composition du tissu propre des plantes et
du ligneux. Comptes-rendus l’académie des Sci. 7: 1052-1057.
Petitpas, T. 1948. Etude de l’alcali-cellulose: Variations de structure de
la cellulose dans les lessives alcalines. Compte-rendu du Lab. Cent. des
Serv. Chim- iques l’Etat 226: 139-147.
Philipp, B., Schleicher, H. & Wagenknecht, W. 1977. Non-aqueous
solvents of cellulose. Cellul. Chem. Technol. 48: 278-297.
Pierre, A.C. 2011. History of aerogels. In Advances in Sol-Gel Derived
Materials and Technologies, edited by Aegerter, M.A. & Prassas, M. New
York: Springer. pp. 3-18.
Pottathara, Y.B., Bobnar, V., Finšgar, M., Grohens, Y., Thomas, S. &
Kokol, V. 2018. Cellulose nanofibrils-reduced graphene oxide xerogels and
cryogels for dielectric and electrochemical storage applications. Polymer
(Guildf) 147: 260-270.
Qi, H., Liebert, T., Meister, F. & Heinze, T. 2009. Homogenous
carboxymethylation of cellulose in the NaOH/urea aqueous solution. React.
Funct. Polym. 69: 779-784.
Salleh, K.M., Zakaria, S., Gan, S., Baharin, K.W., Ibrahim, N.A. &
Zamzamin, R. 2020. Interconnected macropores cryogel with nano-thin crosslinked
network regenerated cellulose. Int. J. Biol. Macromol. 148: 11-19.
Salleh, K.M., Zakaria, S., Sajab, M.S., Gan, S. & Kaco, H. 2019.
Superabsorbent hydrogel from oil palm empty fruit bunch cellulose and sodium
carboxymethylcellulose. Int. J. Biol. Macromol. 131: 50-59.
Salleh, K.M., Zakaria, S., Sajab, M.S., Gan, S., Chia, C.H., Jaafar, S.N.
& Amran, U.A. 2018. Chemically crosslinked hydrogel and its driving force
towards superabsorbent behaviour. Int. J. Biol. Macromol. 118:
1422-1430.
Sannino, A., Demitri, C. & Madaghiele, M. 2009. Biodegradable
cellulose-based hydrogels: Design and applications. Materials (Basel) 2:
353-373.
Sarko, A., Southwick, J. & Hayashi, J. 1976. Packing analysis of
carbohydrates and polysaccharides. 7. Crystal structure of cellulose IIII and
its relationship to other cellulose polymorphs. Macromolecules 9:
857-863.
Sen, S., Martin, J.D. & Argyropoulos, D.S. 2013. Review of cellulose
non-derivatizing solvent interactions with emphasis on activity in inorganic
molten salt hydrates. ACS Sustain. Chem. Eng. 1: 858-870.
Sescousse, R., Gavillon, R. & Budtova, T. 2011. Aerocellulose from
cellulose-ionic liquid solutions: Preparation, properties and comparison with
cellulose-NaOH and cellulose-NMMO routes. Carbohydr. Polym. 83:
1766-1774.
Shen, Q., 2010. Surface
properties of cellulose and cellulose derivatives: A review. In Model Cellulose Surface, edited by Roman, M. Oxford:
Oxford University Press. pp. 259-289.
Sixta, H. 2006. Handbook of Pulp. Weinheim: Wiley-VCH Verlag GmbH
& Co. KGaA.
Sobue, H., Kiessig, H. & Hess, K. 1939. Das system
cellulose–natriumhydroxyd–wasser in abhängigkeit von der temperatur. Zeitschrift
für Phys. Chemie 43: 309-328.
Stergar, J. & Maver, U. 2016. Review of aerogel-based materials in
biomedical applications. J. Sol-Gel Sci. Technol. 77: 738-752.
Swatloski, R.P., Spear, S.K., Holbrey, J.D. & Rogers, R.D. 2002.
Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 124:
4974-4975.
Tamon, H. & Ishizaka, H. 1999. Preparation of organic mesoporous gel
by supercritical/freeze drying. Dry. Technol. 17: 1653-1665.
Tamon, H., Ishizaka, H., Yamamoto, T. & Suzuki, T. 2001. Freeze drying
for preparation of aerogel-like carbon. Dry. Technol. 19: 313-324.
Tamon, H., Ishizaka, H., Mikami, M. & Okazaki, M. 1997. Porous
structure of organic and carbon aerogels synthesized by sol-gel
polycondensation of resorcinol with formaldehyde. Carbon 35: 791-796.
Liebert,
T.F., Heinze, T.J. & Edgar, K.J. 2010. Cellulose Solvents: For Analysis, Shaping and Chemical Modification. ACS
Division of Cellulose and Renewable Materials.
VanBemmelen, J.M. 1894. Der Hydrogel und das kristallinische Hydrat des
Kupferoxydes. Zeitschrift für Anorg. und Allg. Chemie 5: 466.
Vyas, C., Poologasundarampillai, G., Hoyland, J. & Bartolo, P. 2017. 3D
Printing of Biocomposites for Osteochondral Tissue Engineering. 2nd ed.
Biomedical Composites. Elsevier Ltd.
Wang, R., Shou, D., Lv, O., Kong, Y., Deng, L. & Shen, J. 2017.
pH-Controlled drug delivery with hybrid aerogel of chitosan, carboxymethyl
cellulose and graphene oxide as the carrier. Int. J. Biol. Macromol. 103:
248-253.
Wang, Y. 2008. Cellulose Fiber Dissolution in Sodium Hydroxide Solution
at Low Temperature: Dissolution Kinetics and Solubility Improvement. Georgia Institute of Technology.
Wichterle, O. & Lim, D. 1960. Hydrophilic gels for biological use. Nature 185: 117-129.
Wolfrom, M.L. 1955. Advances in Carbohydrate Chemistry. New York:
Acad. Press Inc. p. 10.
Yahia, L.H., Chirani, N., Gritsch, L., Motta, F.L. & Natta, C.G. 2015.
History and applications of hydrogels. iMedPub Journals 4: 1-23.
Yamasaki, S., Sakuma, W., Yasui, H., Daicho, K., Saito, T., Fujisawa, S.,
Isogai, A. & Kanamori, K. 2019. Nanocellulose xerogels with high porosities
and large specific surface areas. Front. Chem. 7: 1-8.
Zhang, L., Ruan, D. & Gao, S. 2002. Dissolution and regeneration of
cellulose in NaOH/Thiourea aqueous solution. J. Polym. Sci. Part B Polym.
Phys. 40: 1521-1529.
Zhou, J. & Zhang, L. 2000. Solubility of cellulose in NaOH/urea
aqueous solution. Polym. J. 32: 866-870.
Zhou, J., Chang, C., Zhang, R. & Zhang, L. 2007. Hydrogels prepared
from unsubstituted cellulose in NaOH/urea aqueous solution. Macromol.
Biosci. 7: 804-809.
Zhou, J., Zhang, L. & Cai, J. 2004. Behavior of cellulose in NaOH/urea
aqueous solution characterized by light scattering and viscometry. J. Polym.
Sci. Part B Polym. Phys. 42: 347-353.
*Pengarang
untuk surat-menyurat; email: szakaria@ukm.edu.my
|