Sains Malaysiana 50(11)(2021): 3171-3179

http://doi.org/10.17576/jsm-2021-5011-02

 

 

Impacts of κ-Oligocarrageenan Application on Photosynthesis, Nutrient Uptake and Bean Yield of Coffee (Coffea robusta)

(Kesan Pengaplikasian κ-Oligokaragenan pada Fotosintesis, Pengambilan Nutrien dan Hasil Biji Kopi (Coffea robusta))

 

PHAM TRUNG SAN1, CHAU MINH KHANH1, HUYNH HOANG NHU KHANH1*, TRUONG ANH KHOA1, NGUYEN HOANG1, PHAM DUC THINH1 & THANH-DANH NGUYEN2

 

1NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, NhaTrang City, Vietnam

 

2Institute of Chemical Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City

Vietnam

 

Diserahkan: 13 September 2020/Diterima: 11 Mac 2021

 

ABSTRACT

κ-Oligocarrgeenan (OC) is well known as an effective and green plant growth promoter and elicitor. However, its effect on coffee plant has not been investigated so far. This study aimed to examine the impacts of OC on biophysical activity, vegetative growth and productivity of coffee plant (Coffea robusta). OC with average molecular weight (AMW) of 4.0 kDa was prepared by depolymerization of carrageenan using ascorbic acid. Field experiments were conducted by foliar spray four times per year at various OC concentrations (50, 100, 150, 200, and 250 ppm) for three years (2017-2019). The results showed that OC promoted growth of coffee plant in all tested concentrations, and an optimized concentration was found at 150 ppm which showed a significant increase compared to the control plant in total chlorophyll (24.79%), carotenoid (31.65%), uptakes of N (15.66%), P (15.81%), and K (22.25%) minerals in leaves, crop yield (19.80%) and bean size (13.10%). Therefore, OC is potentially promising to apply as a promoter to enhance yield of crops for sustainable coffee plantation.

 

Keywords: Bean yield; coffee plant; concentration; oligocarrageenan; promoter

 

ABSTRAK

κ-Oligokaragenan (OC) terkenal sebagai penggalak pertumbuhan tanaman hijau dan pengelisit yang berkesan. Walau bagaimanapun, kesannya terhadap kilang kopi belum dikaji setakat ini. Kajian ini bertujuan untuk mengkaji kesan OC terhadap aktiviti biofizik, pertumbuhan vegetatif dan produktiviti tanaman kopi (Coffea robusta). OC dengan berat molekul purata (AMW) 4.0 kDa disediakan dengan penceraian polimer karagenan menggunakan asid askorbik. Uji kaji lapangan dilakukan dengan semburan daun empat kali setahun pada pelbagai kepekatan OC (50, 100, 150, 200 dan 250 ppm) selama tiga tahun (2017-2019). Hasil kajian menunjukkan bahawa OC mendorong pertumbuhan tanaman kopi pada semua kepekatan yang diuji dan kepekatan yang optimum didapati pada 150 ppm yang menunjukkan peningkatan yang signifikan berbanding kilang kawalan dalam mineral jumlah klorofil (24.79%), karotenoid (31.65%), pengambilan N (15.66%), P (15.81%) dan K (22.25%) dalam daun, hasil tanaman (19.80%) dan saiz kacang (13.10%). Oleh itu, OC berpotensi untuk diterapkan sebagai penggalak untuk meningkatkan hasil tanaman perkebunan kopi lestari.

 

Kata kunci: Hasil kacang; kepekatan; kilang kopi; oligokaragenan; penggalak

 

RUJUKAN

Abad, L.V., Aurigue, F.B., Montefalcon, D.R.V., Manguiat, P.H., Carandang, F.F., Mabborang, S.A., Hizon, M.G.S. & Abella, M.E.S. 2018a. Effect of radiation-modified kappa-carrageenan as plant growth promoter on peanut (Arachis hypogaea L.). Radiat. Phys. Chem. 153: 239-244.

Abad, L.V., Dean, G.F.O., Magsino, G.L., Cruz, R.M.M.D., Tecson, M.G., Abella, M.E.S. & Hizon, M.G.S. 2018b. Semi-commercial scale production of carrageenan plant growth promoter by E-beam technology. Radiat. Phys. Chem. 143: 53-58.

Abad, L.V., Aurigue, F.B., Relleve, L.S., Montefalcon, D.R.V. & Lopez, G.E.P. 2016. Characterization of low molecular weight fragments from gamma irradiated κ-carrageenan used as plant growth promoter. Radiat. Phys. Chem. 118: 75-80.

Ahmad, B., Jahan, A., Sadiq, Y., Shabbir, A., Jaleel, H. & Khan, M.M.A. 2019. Radiation-mediated molecular weight reduction and structural modification in carrageenan potentiates improved photosynthesis and secondary metabolism in peppermint (Mentha piperita L.). Inter. J. Biol. Macromol. 124: 1069-1079.

Bi, F., Iqbal, S., Arman, M., Ali, A. & Hassan, M. 2011. Carrageenan as an elicitor of induced secondary metabolites and its effects on various growth characters of chickpea and maize plants. J. Saudi Chem. Soc. 15: 269-273.

Bongalos, J., Duna, L., Tigbao, J. & Aurigue, F. 2019. Radiation-modified kappa-carrageenan improves productivity of peanut (Arachis hypogaea L.) in Bukidnon, northern Mindanao, Philippines. Philip. J. Sci. 149: 101-105.

Campanha, M.M., Santos, R.H.S., Freitas, G.B.D., Martinez, H.E.P., Garcia, S.L.R. & Finger, F.L. 2004. Growth and yield of coffee plants in agroforestry and monoculture systems in Minas Gerais, Brazil. Agrofor. Syst. 63: 75-82.

Carroll, M.J., Slaughter, L.H. & Krouse, J.M. 1994. Turgor potential and osmotic constituents of Kentucky bluegrass leaves supplied with four levels of potassium. Agron. J. 86: 1079-1083.

Castro, J., Vera, J., González, A. & Moenne, A. 2012. Oligo-carrageenans stimulate growth by enhancing photosynthesis, basal metabolism, and cell cycle in tobacco plants (var. Burley). J. Plant Growth Regul. 31: 173-185.

Chapman, H.D. & Pratt, P.F. 1962. Methods of analysis for soils, plants and waters. Soil Sci. 93: 68.

Cottenie, A., Verloo, M. & Kiekens, L. 1982. Chemical Analysis of Plants and Soils. Gent: RUG. Laboratory of Analytical and Agrochemistry. p. 63.

Dias, K.G.D.L., Guimarães, P.T.G., Neto, A.E.F., Silveira, H.R.O.D. & Lacerda, J.J.D.J. 2017. Effect of magnesium on gas exchange and photosynthetic efficiency of coffee plants grown under different light levels. Agriculture 7(10): 85.

Dzung, N.A., Khanh, V.T.P. & Dzung, T.T. 2011. Research on impact of chitosan oligomers on biophysical characteristics, growth, development and drought resistance of coffee. Carbohydr. Polym. 84: 751-755.

Gatan, M.G.B., Recto, D., Montefalcon, V., Aurigue, F.B. & Abad, L.V. 2019. Effect of radiation modified kappa carrageenan on mungbean. Philip. J. Sci. 149: 35-143.

German, P.U.J., Rey, C.N., Fredisminda, M.D., Matt, E.S.A., Mark, G.S.H. & Sancho, A.M. 2020. Effects of radiation modified kappa carrageenans supplemention in corn (Zea mays L.). J. Crit. Rev. 7: 6-8.

González, A., Contreras, R.A. & Moenne, A. 2013. Oligo-carrageenans enhance growth and contents of cellulose, essential oils and polyphenolic compounds in Eucalyptus globulus trees. Molecules 18: 8740-8751.

Guilli, M.E., Hamza, A., Clément, C., Ibriz, M. & Barka, E.A. 2016. Effectiveness of postharvest treatment with chitosan to control citrus green mold. Agriculture 6(2): 12.

Jaramillo-Botero, C., Santos, R.H.S., Martinez, H.E.P., Cecon, P.R. & Fardin, M.P. 2010. Production and vegetative growth of coffee trees under fertilization and shade levels. Sci. Agric. (Piracicaba, Braz.) 67: 639-645.

Moran, R. 1982. Formulae for determination of chlorophyllous pigments extracted with N,N-dimethylformamide. Plant Physiol. 69: 1376.

Munoz, A.M., Ponce, J.C. & Araya, J.V. 2011. Method to stimulate carbon fixation in plants with an aqueous solution of oligocarrageenans selected from kappa1, kappa2, lambda or iota, US patent, US20110099898A1.

Naeem, M., Idrees, M., Aftab, T., Moinuddin, A.S. & Varshney, L. 2012. Depolymerised carrageenan enhances physiological activities and menthol production in Mentha arvensis L. Carbohydr. Polym. 87: 1211-1218.

Salamanca-Jimenez, A., Doane, T.A. & Horwath, W.R. 2017. Nitrogen use efficiency of coffee at the vegetative stage as influenced by fertilizer application method. Front. Plant Sci. 8: 223-223.

Salachna, P., Grzeszczuk, M., Meller, E. & Soból, M. 2018. Oligo-alginate with low molecular mass improves growth and physiological activity of Eucomis autumnalis under salinity stress. Molecules 23(4): 812.

San, P.T., Khanh, C.M., Khanh, H.H.N., Khoa, T.A., Hoang, N., Nhung, L.T., Trinh, N.T.K. & Nguyen, T.D. 2020. k-Oligocarrageenan promoting growth of hybrid maize: Influence of molecular weight. Molecules 25(17): 3825.

Saucedo, S., Contreras, R.A. & Moenne, A. 2015. Oligo-carrageenan kappa increases C, N and S assimilation, auxin and gibberellin contents, and growth in Pinus radiata trees. J. For. Res. 26: 635-640.

Singh, M., Khan, M.M., Uddin, M., Naeem, M. & Qureshi, M.I. 2017. Proliferating effect of radiolytically depolymerized carrageenan on physiological attributes, plant water relation parameters, essential oil production and active constituents of Cymbopogon flexuosus Steud. under drought stress. PLoS ONE 12: e0180129.

Stadnik, M.J. & Freitas, M.B.D. 2014. Algal polysaccharides as source of plant resistance inducers. Trop. Plant Pathol. 39: 111-118.

Walling, L.L. 2000. The myriad plant responses to herbivores. J. Plant Growth Regul. 19: 195-216.

Xia, W., Liu, P., Zhang, J. & Chen, J. 2011. Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll. 25: 170-179.

Xu, L. & Geelen, D. 2018. Developing biostimulants from agro-food and industrial by-products. Front. Plant Sci. 9: 1567.

Zulfiqar, F., Casadesús, A., Brockman, H. & Munné-Bosch, S. 2020. An overview of plant-based natural biostimulants for sustainable horticulture with a particular focus on moringa leaf extracts. Plant Sci. 295: 110194.

 

*Pengarang untuk surat-menyurat; email: khanhhuynh@nitra.vast.vn

   

 

 

 

sebelumnya