Sains Malaysiana 50(12)(2021): 3467-3479

http://doi.org/10.17576/jsm-2021-5012-01

 

Impacts of Sea Temperature Rise on Rastrelliger kanagurta Potential Fishing Grounds in the Exclusive Economic Zone (EEZ) off South China Sea

(Kesan Kenaikan Suhu Laut terhadap Kawasan Perikanan Berpotensi Rastrelliger kanagurta pada Zon Ekonomi Eksklusif (EEZ) di Laut China Selatan)

 

KAMARUZZAMAN, Y.N.1,2, MUSTAPHA, M.A.1,* & GHAFFAR, M.A.3

 

1Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21300 Kuala Terengganu, Terengganu Darul Iman, Malaysia

 

3Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21300 Kuala Terengganu, Terengganu Darul Iman, Malaysia

 

Diserahkan: 23 Oktober 2020/Diterima: 18 Mac 2021

 

ABSTRACT

The Indian mackerel (Rastrelliger kanagurta) is one of the most commercially crucial epipelagic scombrid where it is caught in the Exclusive Economic Zone (EEZ) off the South China Sea (SCS). High demand for fisheries resources is a challenge for fishers to achieve optimal fish landing targets. By using R. kanagurta catch data, and high resolution satellite data of chl-a and SST (MODIS-Aqua) and SSH (AVISO) from 2018 together with boosted regression tree (BRT) model, this study aims to determine the impact of sea surface temperature (SST) increase on the potential catch of R. kanagurta based on temperature projection of IPCC-AR5-RCPs scenarios. BRT modelling result indicated that during the northeast monsoon (NEM), at elevated temperature of 1.80 and 2.60 ℃ showed that the potential fishing grounds of R. kanagurta increase in the area especially in the northern part of the EEZ. However, at elevated temperature of 3.30 ℃, the potential fishing areas was found to decrease along the coast of Peninsular Malaysia. Meanwhile, during southwest monsoon (SWM) and inter-monsoon transition, at temperature rise of 1.80, 2.60 and 3.30 °C showed a significant reduction in the potential fishing area of the R. kanagurta potential fishing grounds especially along the coast of the EEZ off SCS. Results indicated that changes in SST influenced suitability of habitat which affected the distribution of R. kanagurta. Understanding the impacts of temperature increase would contribute towards future sustainable fisheries resource management strategies.

 

Keywords: Boosted regression trees; exclusive economic zone; increase sea surface temperature; potential fishing ground; Rastrelliger kanagurta

 

ABSTRAK

Ikan kembung India (Rastrelliger kanagurta) adalah ikan epipelagik yang merupakan salah satu sumber marin komersil yang terpenting di perairan Zon Ekonomi Eksklusif (ZEE) Malaysia di Laut China Selatan (LCS). Permintaan tinggi terhadap sumber perikanan merupakan cabaran bagi nelayan untuk mencapai sasaran pendaratan ikan yang optimum. Kajian ini menggunakan data tangkapan ikan R. kanagurta, data satelit resolusi tinggi bagi klorofil-a (chl-a) dan suhu permukaan laut (SST) (MODIS-Aqua) serta ketinggian permukaan laut SSH (AVISO) pada tahun 2018 bersama model ‘boosted regression trees’ (BRT), bagi mendapatkan perhubungan antara taburan ikan R. kanagurta dengan faktor oseanografi dan menentukan taburan ikan R. kanagurta di perairan ZEE di LCS berdasarkan kenaikan suhu permukaan laut (SST) menggunakan pengunjuran suhu IPCC-AR5-RCPs. Hasil pemodelan BRT menunjukkan bahawa semasa monsun timur laut, kenaikan suhu 1.80 dan 2.60 ℃ menunjukkan bahawa kawasan potensi penangkapan ikan R. kanagurta meningkat terutamanya di bahagian utara ZEE. Namun, pada kenaikan suhu 3.30 ℃, kawasan penangkapan ikan yang berpotensi di zon tangkapan didapati berkurang di sepanjang perairan pantai di Semenanjung Malaysia. Sementara itu, semasa monsun barat daya dan monsun peralihan, pada kenaikan suhu 1.80, 2.60 dan 3.30 ℃ menunjukkan penurunan yang signifikan di kawasan potensi penangkapan ikan R. kanagurta terutamanya di sepanjang perairan pantai ZEE di LCS. Hasil menunjukkan bahawa perubahan dalam SST mempengaruhi kesesuaian habitat yang mempengaruhi taburan ikan R. kanagurta. Memahami kesan peningkatan suhu dapat menyumbang kepada strategi pengurusan sumber perikanan yang lebih lestari pada masa depan.

 

Kata kunci: 'Boosted regression trees'; kawasan potensi penangkapan ikan; kenaikan suhu permukaan laut; Rastrelliger kanagurta; zon ekonomi eksklusif

 

RUJUKAN

Akhir, M.F., Zakaria, N.Z. & Tangang, F. 2014. Intermonsoon variation of physical characteristics and current circulation along the coast of Peninsular Malaysia. International Journal of Oceanography 2014: 1-9.

Andrade, H.A. & Garcia, C.A.E. 1999. Skipjack tuna fishery in relation to sea surface temperature off the southern Brazillian coast. Fisheries Oceanography 8(4): 245-254.

Beaugrand, G., Reid, P.C., Ibanez, F., Lindley, J.A. & Edwards, M. 2002. Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296(5573): 1692-1694.

Bellido, J.M., Brown, A.M., Dalavanis, V.D., Giráldez, A., Pierce, G.J., Iglesias, M. & Palialexis, A. 2008. Identifying essential fish habitat for small pelagic species in Spanis Mediterranean waters. Hydrobiologia 612(2008): 171-184.

Brander, K. 2013. Climate and current anthropogenic impacts on fisheries. Climatic Change 119(1): 9-21.

Brander, K. 2010a. Impacts of climate change on fisheries. Journal of Marine Systems 79(3-4): 389-402.

Brander, K.M. 2010b. Cod Gadus morhua and climate change: Processes, productivity and prediction. Journal of Fish Biology 77(8): 1899-1911.

Brander, K.M. & Mohn, R.K. 2004. Effect of the North Atlantic oscillation on recruitment of Atlantic cod. Canadian Journal of Fisheries and Aquatic Sciences 61(9): 1558-1564.

Brander, K.M., Blom, G., Borges, M.F., Erzini, K., Henderson, G., MacKenzie, B.R., Mendes, H., Ribeiro, J., Santos, A.M.P. & Toresen, R. 2003. Changes in fish distribution in the eastern North Atlantic: Are we seeing a coherent response to changing temperature? In International Council of the Exploration of the Sea (ICES) Marine Science Symposia. 219: 261-270.

Callihan, J.L., Takata, L.T., Woodland, R.J. & Secor, D.H. 2008. Cohort splitting in bluefish, Pomatomus saltatrix, in the US mid‐ Atlantic Bight. Fisheries Oceanography 17(3): 191-205.

Chambers, J.M. & Hastie, T.J. 1992. Statistical Models. London: Chapman and Hall. pp. 1-608.

Cheung, W.W.L., Watson, R. & Pauly, D. 2013. Signature of ocean warming in global fisheries catch. Nature 497(7449): 365-368.

De’Ath, G. 2007. Boosted trees for ecological modelling and prediction. Ecology 88(1): 243-251.

Drinkwater, K.F. 2005. The response of Atlantic cod (Gadus morhua) to future climate change. ICES Journal of Marine Science 62(7): 1327-1337.

Dueri, S., Bopp, L. & Maury, O. 2014. Projecting the impacts of climate change on skipjack tuna abundance and spatial distribution. Global Change Biology 20(3): 742-753.

Edwards, M. & Richardson, A.J. 2004. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430(7002): 881-884.

Elith, J., Leathwick, J.R. & Hastie, T. 2008. A working guide to boosted regression trees. Journal of Animal Ecology 77(4): 802-813.

FAO. 2003. The Ecosystem Approach to Marine Capture Fisheries. Food and agriculture organization technical guidelines for responsible fisheries. p. 112.

Fulton, E.A. 2011. Interesting times: Winners, losers, and system shifts under climate change around Australia. ICES Journal of Marine Science 68(6): 1329-1342.

Gangoso, L., Márquez-Ferrando, R., Ramírez, F., Gomez-Mestre, I. & Figuerola, J. 2013. Understanding phenotypic responses to global change. BioEssays 35(5): 491-495.

Giddings, E.M., Brown, L.R., Short, T.M. & Meador, M.R. 2006. Relation of fish communities to environmental conditions in urban streams of the Wasatch Front, Utah. Western North American Naturalist 66(2): 155-168.

Harley, C.D.G. 2011. Climate change, keystone predation, and biodiversity loss. Science 334(6059): 1124-1127.

Hastie, T.J. & Tibshirani, R.J. 1990. Generalised Additive Models. New York: Chapman and Hall. p. 352.

Hollowed, A.B., Barange, M., Beamish, R.J., Brander, K., Cochrane, K., Drinkwater, K., Foreman, M.G.G., Hare, J.A., Holt, J., Ito, S., Kim, S., King, J.R., Loeng, H., MacKenzie, B.R., Mueter, F.J., Okey, T.A., Peck, M.A., Radchencko, V.I., Rice, J.C., Schirripa, M.J., Yatsu, A. & Yamanaka, Y. 2013. Projected impacts of climate change on marine fish and fisheries. ICES Journal of Marine Science 70(5): 1023-1037.

Hosmer, D.W. & Lemeshow, S. 2000. Applied Logistic Regression. 2nd ed. New York: John Wiley & Sons, Inc. pp. 1-383.

Hughes, T.P., Baird, A.H., Bellwood, D.R., Card, M., Connolly, S.R., Folke, C., Grosberg, R., Hoegh-Guldberg, O., Jackson, J.B.C., Kleypas, J., Lough, J.M., Marshall, P., Nyström, M., Palumbi, S.R., Pandolfi, J.M., Rosen, B. & Roughgarden, J. 2003. Climate change, human impacts, and the resilience of coral reefs. Science 301(5635): 929-933.

IPCC. 2014a. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the Fifth assessment report of the intergovernmental panel on climate change. Cambridge, UK and New York, USA: Cambridge University Press.

IPCC. 2014b. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: regional aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, UK and New York, USA: Cambridge University Press.

James, G., Witten, D., Hastie, T. & Tibshirani, R. 2013. An Introduction to Statistical Learning Vol. 6. New York: Springer. pp. 1-441.

Lam, V.W.Y., Allison, E.H., Bell, J.D., Blythe, J., Cheung, W.W., Frölicher, T.L., Gasalla, M.A. & Sumaila, U.R. 2020. Climate change, tropical fisheries and prospects for sustainable development. Nature Reviews Earth and Environment 1(9): 440-454.

Lasram, F.B.R. & Mouillot, D. 2009. Increasing southern invasion enhances congruence between endemic and exotic Mediterranean fish fauna. Biological Invasions 11(3): 697-711.

Lehodey, P., Senina, I., Calmettes, B., Hampton, J. & Nicol, S. 2012. Modelling the impact of climate change on Pacific skipjack tuna population and fisheries. Climate Change 119(1): 95-109.

Leathwick, J.R., Elith, J., Francis, M.P., Hastie, T. & Taylor, P. 2006. Variation in demersal fish species richness in the oceans surrounding New Zealand: An analysis using boosted regression trees. Marine Ecology Progress Series 321: 267-281.

Mansor, M., Abdullah, S. & Hamid, A. 1996. Population Structure of Small Pelagic Fisheries Off the East Coast of Peninsular Malaysia. Malaysia: Department of Fisheries Malaysia. Ministry of Agriculture. pp. 1-27.

Nadira, Y.K., Mustapha, M.A. & Ghaffar, M.A. 2019. The Indian mackerel aggregation areas in relation to their oceanographic conditions. Sains Malaysiana 48(11): 2575-2581.

Nurdin, S., Mustapha, M.A., Lihan, T. & Zainuddin, M. 2017. Applicability of remote sensing oceanographic data in the detection of potential fishing grounds of Rastrelliger kanagurta in the archipelagic waters of Spermonde, Indonesia. Fisheries Research 196: 1-12.

Palenzuela, J.M.T., Mar, S.C., Jaime, P.F. & Monica, M.L. 1998. Sea surface temperature and chloropyll-a correlation study. Thesis. Universidad de Vigo (Unpublished).

Perry, A.L., Low, P.J., Ellis, J.R. & Reynolds, J.D. 2005. Climate change and distribution shifts in marine fishes. Science 308(5730): 1912-1915.

Phillips, S.J. & Dudík, M. 2008. Modelling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31(2): 161-175.

Raja Bidin, R.H. & Ku Kassim, K.Y. 2007. Information Collection for Sustainable Pelagic Fisheries in the South China Sea. Volume 1. National Country Report. p. 358.

Rapport, D.J., Costanza, R. & McMichael, A.J. 1998. Assessing ecosystem health. Trends in Ecology and Evolution 13(10): 397-402.

Sabatés, A., Martín, P. & Raya, V. 2012. Changes in life‐history traits in relation to climate change: Bluefish (Pomatomus saltatrix) in the Northwestern Mediterranean. ICES Journal of Marine Science 69(6): 1000-1009.

SEAFDEC. 2017. Southeast Asian State of Fisheries and Aquaculture 2017. Bangkok, Thailand: Southeast Asian Fisheries Development Center. p. 167.

Shaari, N.R. & Mustapha, M.A. 2018. Predicting potential Rastrelliger kanagurta fish habitat using MODIS data and GIS modelling: A case study of exclusive economic zone, Malaysia. Sains Malaysiana 47(7): 1369-1378.

Simpson, S.D., Jennings, S., Johnson, M.P., Blanchard, J.L., Schön, P.J., Sims, D.W. & Genner, M.J. 2011. Continental shelf-wide response of a fish assemblage to rapid warming of the sea. Current Biology 21(18): 1565-1570.

Skjoldal, H.R., Dalpadado, P. & Dommasnes, A. 2004. Food webs and trophic interactions. In The Norwegian Sea Ecosystem, edited by Skjoldal, H.R. Trondheim: Tapir Academic Press. pp. 447-506.

Solanki, H.U., Dwivedi, R.M., Nayak, S.R., Naik, S.K., John, M.E. & Somvanshi, V.S. 2005. Cover: Application of remotely sensed closely coupled biological and physical process for marine fishery resources exploration. International Journal of Remote Sensing 26(10): 2029-2034.

Sumaila, U.R., Cheung, W.W.L., Lam, V.W.Y., Pauly, D. & Herrick, S. 2011. Climate change impacts on the biophysics and economics of world fisheries. Nature Climate Change 1(9): 449-456.

Tan, C.K., Shattri, M., Ibrahim, H.M. & Abdul, R. 2002. Studies of sea surface temperature and chloropyhll-a variations in east coast of Peninsular Malaysia. Pertanika Journal of Science & Technology 10(1): 13-24.

Tang, D.L., Kawamura, H., Lee, M. & Van Dien, T. 2003. Seasonal and spatial distribution of chlorophyll-a concentrations and water conditions in the Gulf of Tonkin, South China Sea. Remote Sensing of Environment 85(4): 475-483.

Tseng, C.T., Sun, C.L., Yeh, S.Z., Chen, S.C., Su, W.C. & Liu, D.C. 2011. Influence of climate-driven sea surface temperature increase on potential habitats of the Pacific saury (Cololabis saira). ICES Journal of Marine Science 68(6): 1105-1113.

Vivekanandan, E. 2013. Climate change: Challenging the sustainability of marine fisheries and ecosystems. Journal of Aquatic Biology and Fisheries 1(1&2): 54-67.

Vivekanandan, E. 2011. Climate Change and Indian Marine Fisheries. Kochi, India: Central Marine Fisheries Research Institute. pp. 1-97.

Weimerskirch, H., Louzao, M., de Grissac, S. & Delord, K. 2012. Changes in wind pattern alter albatross distribution and life-history traits. Science 335(6065): 211-214.

Yusop, S.M., Mustapha, M.A. & Lihan, T. 2021. Determination of spatio-temporal distribution of Rastrelliger kanagurta using modelling techniques for optimal fishing. Journal of Coastal Conservation 25(1): 1-7.

Zainuddin, M., Saitoh, K. & Saitoh, S.I. 2008. Albacore (Thunnus alalunga) fishing ground in relation to oceanographic conditions in the western North Pacific Ocean using remotely sensed satellite data. Fisheries Oceanography 17(2): 61-73.

 

*Pengarang untuk surat-menyurat; email: muzz@ukm.edu.my