Sains
Malaysiana 50(12)(2021): 3547-3556
http://doi.org/10.17576/jsm-2021-5012-07
Pengoptimuman Campuran Enzim Selulase Rekombinan untuk
Penguraian Tandan Kosong Kelapa Sawit
(Optimization of
Mixed Cellulase Enzymes for the Degradation of Oil Palm Empty Fruit Bunch)
SHAZILAH KAMARUDDIN*, FARAH DIBA ABU BAKAR & ABDUL MUNIR ABDUL MURAD
Department
of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 28 September 2020/Diterima: 16 April 2021
ABSTRAK
Penggunaan enzim selulase untuk
penguraian biojisim pertanian lignoselulosa telah lama dikaji dan pelbagai
usaha telah dilakukan untuk meningkatkan kecekapan proses hidrolisis.
Keberkesanan penguraian biojisim pertanian kepada gula ringkas
memerlukan satu campuran enzim yang mengandungi pelbagai jenis aktiviti
selulolitik. Dalam kajian ini, satu campuran multi-enzim rekombinan yang
terdiri daripada tiga komponen asas selulase iaitu endoglukanase (EglB) dan
β-glukosidase (BglA) daripada Aspergillus niger serta selobiohidrolase
(CbhII) daripada Trichoderma virens telah
dibentuk khusus untuk hidrolisis tandan kosong kelapa sawit (TKKS). Penghasilan
enzim selulase rekombinan telah dilakukan menggunakan hos pengekspresan Pichia pastoris. Pengoptimuman nisbah
enzim untuk tindak balas ditentukan menggunakan Kaedah Gerak Balas Permukaan (RSM). Hasil menunjukkan hidrolisis TKKS pada
suhu 50 °C dan pH 5.0 menggunakan enzim pada nisbah 641.4 unit CMCase: 10.14
unit Avicelase: 93.8 unit β-glukosidase, menghasilkan gula terturun dan
glukosa tertinggi, masing-masing sebanyak 63 mg dan 40 mg per gram substrat
TKKS. Hasil hidrolisis TKKS oleh campuran multi enzim yang telah dibentuk dalam
kajian ini menunjukkan ketiga-tiga gabungan enzim rekombinan ini berpotensi
untuk digunakan bagi penguraian TKKS.
Kata kunci: Biojisim pertanian; hidrolisis enzim; kaedah
gerak balas permukaan; koktel enzim
ABSTRACT
The use of cellulase enzymes in the degradation of
lignocellulose agriculture biomass has long been studied and various efforts
have been made to improve the efficiency of the hydrolysis process. The efficiency
of enzymatic degradation of agricultural biomass to simple sugars requires a
mixture of enzymes containing various types of cellulolytic activity. In this
study, a recombinant multi-enzyme mixture consisting of three basic components
of cellulase namely endoglucanase (EglB) and β-glucosidase (BglA) from Aspergillus niger as
well as cellobiohydrolase (CbhII) of Trichoderma virens was created specifically for hydrolysis of
oil palm empty fruit bunch (OPEFB). The production of recombinant cellulases
has been performed using Pichia pastoris expression host. The enzyme ratio optimisation was determined using
Response Surface Methodology (RSM). The results showed that the hydrolysis of
OPEFB at 50 °C and pH 5.0 using enzymes at 641.4 units CMCase: 10.14 Avicelase
units: 93.8 β-glucosidase units, produced the highest reducing sugar and
glucose at 63 mg and 40 mg per gram of OPEFB substrate, respectively. The
hydrolysis of OPEFB by a multi-enzyme mixture that has been formed in this
study showed that these three combinations of recombinant enzymes have the
potential to be used for the degradation of OPEFB.
Keywords: Agricultural biomass; enzymatic hydrolysis; enzyme
cocktail; response surface methodology
RUJUKAN
Adsul, M., Sandhu, S.K., Singhania, R.R., Gupta, R., Puri,
S.K. & Mathur, A. 2020. Designing a cellulolytic enzyme cocktail for the
efficient and economical conversion of lignocellulosic biomass to biofuels. Enzyme and Microbial Technology 133(109442): 1-12.
Bahadi, M., Yusoff, M.F., Salimon, J. & Derawi, D. 2020.
Optimization of response surface methodology by D-optimal design for alkaline
hydrolysis of crude palm kernel oil. Sains
Malaysiana 49(1): 29-41.
Bunterngsook, B., Laothanachareon, T., Chotirotsukon, C.,
Inoue, H., Fujii, T., Hoshino, T., Roongsawang, N., Kuboon, S., Kraithong, W.,
Techanan, W., Kraikul, N. & Champreda, V. 2018. Development of tailor-made
synergistic cellulolytic enzyme system for saccharification of steam exploded
sugarcane bagasse. Journal of Bioscience
and Bioengineering 125(4): 390-396.
Campos, L.M.A., Moura, H.O.M.A., Cruz, A.J.G., Assumpção,
S.M.N., de Carvalho, L.S. & Pontes, L.A.M. 2020. Response surface
methodology (RSM) for assessing the effects of pretreatment, feedstock, and
enzyme complex association on cellulose hydrolysis. Biomass Conversion and Biorefinery https://doi.org/10.1007/s13399-020-00756-4.
Charpentier Alfaro, C. & Méndez Arias, J. 2020.
Enzymatic conversion of treated oil palm empty fruit bunches fiber into
fermentable sugars: Optimization of solid and protein loadings and surfactant
effects. Biomass Conversion and
Biorefinery https://doi.org/10.1007/s13399-020-00724-y.
Chiew, Y.L. & Shimada, S. 2013. Current state and
environmental impact assessment for utilizing oil palm empty fruit bunches for
fuel, fiber and fertilizer - A case study of Malaysia. Biomass and Bioenergy 51: 109-124.
Chong, P.S., Jahim, J.M., Harun, S., Lim, S.S., Mutalib,
S.A., Hassan, O. & Nor, M.T.M. 2013. Enhancement of batch biohydrogen
production from prehydrolysate of acid treated oil palm empty fruit bunch. International Journal of Hydrogen Energy
38(22): 9592-9599.
Coward-Kelly, G., Aiello-Mazzari, C., Kim, S., Granda, C.
& Holtzapple, M. 2003. Suggested improvements to the standard filter paper
assay used to measure cellulase activity. Biotechnology
and Bioengineering 82(6): 745-749.
Decker, S.R., Adney, W.S., Jennings, E., Vinzant, T.B. &
Himmel, M.E. 2003. Automated filter paper assay for determination of cellulase
activity. Applied Biochemistry and
Biotechnology 107(1-3): 689-703.
Derman, E., Abdulla, R., Marbawi, H. & Sabullah, M.K.
2018. Oil palm empty fruit bunches as a promising feedstock for bioethanol
production in Malaysia. Renewable Energy 129: 285-298.
Fang, H., Zhao, C. & Song, X.Y. 2010. Optimization of
enzymatic hydrolysis of steam-exploded corn stover by two approaches: Response
surface methodology or using cellulase from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger NL02. Bioresource Technology 101(11):
4111-4119.
Hamzah, F., Idris, A. & Shuan, T.K. 2011. Preliminary
study on enzymatic hydrolysis of treated oil palm (Elaeis) empty fruit bunches fibre (EFB) by using combination of
cellulase and β 1-4 glucosidase. Biomass
and Bioenergy 35(3): 1055-1059.
Kamaruddin, S., Abu Bakar, F.D., Illias, R.M., Said, M.,
Hassan, O. & Murad, A.M.A. 2015. Overexpression, purification and characterization
of Aspergillus niger beta-glucosidase
in Pichia pastoris. Malaysian Applied Biology 44: 7-11.
Kamaruddin, S., Mahadi, N.M., Md Illias, R., Hassan, O.,
Sulaiman, S., Broughton, W., Bharudin, I., Abu Bakar, F.D. & Abdul Murad,
A.M. 2018. Effect of Pichia pastoris host strain on the properties of recombinant Aspergillus niger endoglucanase, EglB. Malaysian Journal of Microbiology 14(6): 554-562.
Kleman-Leyer, K.M., Siika-Aho, M., Teeri, T.T. & Kent
Kirk, T. 1996. The cellulases endoglucanase I and cellobiohydrolase II of Trichoderma reesei act synergistically
to solubilize native cotton cellulose but not to decrease its molecular size. Applied and Environmental Microbiology 62(8): 2883-2887.
Loh, S.K. 2017. The potential of the Malaysian oil palm
biomass as a renewable energy source. Energy
Conversion and Management 141: 285-298.
Lopes, A.M., Ferreira Filho, E.X. & Moreira, L.R.S.
2018. An update on enzymatic cocktails for lignocellulose breakdown. Journal of Applied Microbiology 125(3):
632-645.
Meyer, A.S., Rosgaard, L. & Sørensen, H.R. 2009. The
minimal enzyme cocktail concept for biomass processing. Journal of Cereal Science 50(3):
337-344.
Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for
determination of reducing sugar. Analytical
Chemistry 31(3): 426-428.
Ng, W.P.Q., Lam, H.L., Ng, F.Y., Kamal, M. & Lim, J.H.E.
2012. Waste-to-wealth: Green potential from palm biomass in Malaysia. Journal of Cleaner Production 34:
57-65.
Noratiqah, K., Madihah, M.S., Aisyah, B.S., Eva, M.S.,
Suraini, A.A. & Kamarulzaman, K. 2013. Statistical optimization of
enzymatic degradation process for oil palm empty fruit bunch (OPEFB) in rotary
drum bioreactor using crude cellulase produced from Aspergillus niger EFB1. Biochemical
Engineering Journal 75: 8-20.
Peciulyte, A., Pisano, M., de Vries, R.P. & Olsson, L.
2017. Hydrolytic potential of five fungal supernatants to enhance a commercial
enzyme cocktail. Biotechnology
Letters 39(9): 1403-1411.
Quay, D.H.X., Yee, Y.H., Illias, R.M., Mahadi, N.M., Bakar,
F.D.A. & Murad, A.M.A. 2017. Characterisation of recombinant Trichoderma reesei cellobiohydrolase and
the potential of cellulase mixture in hydrolyzing oil palm empty fruit bunches. Malaysian Applied Biology 46: 11-19.
Rosales-Calderon, O. & Arantes, V. 2019. A review on
commercial-scale high-value products that can be produced alongside cellulosic
ethanol. Biotechnology for Biofuels 12(240): 1-58.
Suwannarangsee, S., Bunterngsook, B., Arnthong, J.,
Paemanee, A., Thamchaipenet, A., Eurwilaichitr, L., Laosiripojana, N. &
Champreda, V. 2012. Optimisation of synergistic biomass-degrading enzyme
systems for efficient rice straw hydrolysis using an experimental mixture
design. Bioresource Technology 119:
252-261.
Tang, P.L., Abdul, P.M., Engliman, N.S. & Hassan, O. 2018.
Effects of pretreatment and enzyme cocktail composition on the sugars
production from oil palm empty fruit bunch fiber (OPEFBF). Cellulose 25(8): 4677-4694.
Van Dyk, J.S. & Pletschke, B.I. 2012. A review of
lignocellulose bioconversion using enzymatic hydrolysis and synergistic
cooperation between enzymes - Factors affecting enzymes, conversion and
synergy. Biotechnology Advances 30(6):
1458-1480.
Wang, Z., Winestrand, S., Gillgren, T. & Jönsson, L.J.
2018. Chemical and structural factors influencing enzymatic saccharification of
wood from aspen, birch and spruce. Biomass
and Bioenergy 109: 125-134.
Wood, T. & McCrae, S.I. 1979. Synergism between enzymes
involved in the solubilization of native cellulose. Advances in Chemistry Series 181: 181-209.
Wood, T.M. & Bhat, K.M. 1988. Methods for measuring
cellulase activities. Methods in
Enzymology 160: 87-112.
Zhou, J., Wang, Y.H., Chu, J., Luo, L.Z., Zhuang, Y.P. &
Zhang, S.L. 2009. Optimization of cellulase mixture for efficient hydrolysis of
steam-exploded corn stover by statistically designed experiments. Bioresource Technology 100(2): 819-825.
*Pengarang untuk surat-menyurat; email: shazilah@ukm.edu.my
|