Sains
Malaysiana 50(12)(2021): 3719-3732
http://doi.org/10.17576/jsm-2021-5012-21
Pengoptimuman
Parameter bagi Selulosa Tandan Kosong Kelapa Sawit (TKKS) Teresterifikasi
(Parameter
Optimization on Esterified Oil Palm Empty Fruit Bunch Cellulose (OPEFB))
MARHAINI MOSTAPHA1,2,
FATIHAH AZAMKAMAL1, KUSHAIRI MOHD SALLEH*1, UMAR ADLI
AMRAN1, SINYEE GAN3 & SARANI ZAKARIA1
1Bioresources & Biorefinery
Laboratory, Department of Applied Physics, Faculty of Science and Technology,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
2Higher Institution Centres of Excellence,
Center for Biofuels and Biochemical Research, Institute of Self-Sustainable
Building, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak
Darul Ridzuan, Malaysia
3Malaysian
Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang,
Selangor, Darul Ehsan, Malaysia
Diserahkan: 8 Januari 2021/Diterima:
2 April 2021
ABSTRAK
Pengubahsuaian
kimia terhadap selulosa tandan kosong kelapa sawit (TKKS) menggunakan agen
pengesteran asid etilena diamina tetraasetik (EDTA) dan asid asetik (AA) dengan
parameter yang berbeza dikaji dan dioptimumkan. Pada peringkat awal, pulpa TKKS
telah dirawat menggunakan empat peringkat pelunturan (D-E-E-D) untuk
menghasilkan selulosa TKKS. Seterusnya, selulosa TKKS melalui proses
esterifikasi menggunakan AA dan EDTA yang dibantu oleh sistem pemanasan
gelombang mikro bagi tujuan penambahbaikan keberkesanan pengesteran. Pengaruh
parameter pra-rawatan terhadap kestabilan termal dan perubahan kumpulan
berfungsi dioptimumkan dengan menggunakan reka bentuk komposit pusat (CCD),
pemodelan permukaan tindak balas (RSM) diikuti dengan analisis
termogravitometri (TGA) dan analisis kumpulan berfungsi (FT-IR). Didapati
terdapat perbezaan ketara (produk esterifikasi) berlaku kepada selulosa TKKS
yang diubah suai menggunakan EDTA berbanding AA pada suhu yang tinggi. Data RSM
menunjukkan suhu, masa, dan kepekatan bahan kimia yang dioptimumkan untuk
selulosa-AA adalah pada suhu 90 °C, 46 min dan kepekatan 8.18, manakala
selulosa-EDTA adalah pada suhu 100 °C, 70 min dan kepekatan 0.7. Berdasarkan
analisis CCD, keputusan menunjukkan bahawa rawatan selulosa TKKS dengan agen
pengesteran EDTA adalah lebih baik berbanding dengan AA.
Kata
kunci: Asid asetik; EDTA; esterifikasi; RSM; selulosa
ABSTRACT
Chemical modifications of oil palm
empty fruit bunch cellulose (OPEFBC) using ethylenediaminetetraacetic acid
(EDTA) and acetic acid (AA) with different parameters were studied and
optimized. At the initial stage, OPEFB pulp was treated using four stages of
bleaching stage (D-E-E-D) for production of OPEFBC. Next, the OPEFB cellulose
undergo esterification process using AA and EDTA under microwave assisted
heating system to further enhance esterification. The influence of
pre-treatment parameters on thermal stability and functional group changes were
optimized using central composite design (CCD), response surface modelling
(RSM) followed by thermogravimetric analysis (TGA) and functional group
analysis (FT-IR). The results showed there were significant differences
occurred on the modified OPEFB cellulose particularly by EDTA where higher
thermal properties were observed with better esterification product with higher
modification occurs compared to cellulose treated with AA. The RSM data showed
that temperature, time, and chemicals concentrations optimized for cellulose-AA
were at 90 °C, 46 min, and 8.18, respectively, while the optimum parameters for
cellulose-EDTA were at 100 °C, 70 min, and 0.7 concentrations, respectively.
Based on CCD analysis, the results showed that OPEFB cellulose esterified with
EDTA agent is better than AA.
Keywords:
Acetic acid; cellulose; EDTA; esterification; RSM
RUJUKAN
Abd Wafti, N.S., Lau, H.L.N., Loh, S.K., Aziz, A.A.,
Ab Rahman, Z. & May, C.Y. 2017. Activated carbon from oil palm biomass as
potential adsorbent for palm oil mill effluent treatment. Journal of Oil Palm Research 29(2):
278-290.
Ahluwalia,
S.S. & Goyal, D. 2007. Microbial and plant derived biomass for removal of
heavy metals from wastewater. Bioresource
Technology 98(12): 2243-2257.
Ahmad,
M., Ahmed, S., Swami, B.L. & Ikram, S. 2015. Adsorption of heavy metal
ions: Role of chitosan and cellulose
for water treatment. International
Journal of Pharmacognosy 2(6): 280-289.
Ahmad,
R., Hamid, R. & Osman, S.A. 2019. Physical and chemical modifications of
plant fibres for reinforcement in cementitious composites. Advances in Civil Engineering 2019:
Article ID. 5185806.
Anuar,
N.I.S., Zakaria, S., Gan, S., Chia, C.H., Wang, C. & Harun, J. 2019.
Comparison of the morphological and mechanical properties of oil Palm EFB
fibres and kenaf fibres in nonwoven reinforced composites. Industrial Crops and Products 127:
55-65.
Asghar,
A., Raman, A.A.A. & Daud, W.M.A.W. 2015. Advanced oxidation processes for in situ production of hydrogen
peroxide/hydroxyl radical for textile wastewater treatment: A review. Journal of Cleaner Production 87:
826-838.
Azamkamal,
F., Zakaria, S., Gan, S. & Kaco, H. 2018. Chemical and thermal studies on
esterification of EDTA with raw cellulose and mercerized cellulose EFB.
In AIP Conference Proceedings 1940(1):
020016.
Baiya,
C., Nannuan, L., Tassanapukdee, Y., Chailapakul, O. & Songsrirote, K. 2019.
The synthesis of carboxymethyl cellulose based hydrogel from sugarcane bagasse
using microwave assisted irradiation for selective adsorption of copper (II)
ions. Environmental Progress &
Sustainable Energy 38(1): 157-165.
Bewick,
V., Cheek, L. & Ball, J. 2003. Statistics review 7: Correlation and
regression. National Center for
Biotechnology Information 7: 451-459.
Daneshfozouna,
S., Nazirb, M.S., Abdullaha, B. & Abdullaha, M.A. 2014. Surface
modification of celluloses extracted from oil palm empty fruit bunches for
heavy metal sorption. Chemical
Engineering 37: 679-683.
de Carvalho Benini, K.C.C., Pereira,
P.H.F., Cioffi, M.O.H. & Voowald, H.J.C. 2017. Effect of acid hydrolysis
conditions on the degradation properties of cellulose from Imperata Brasiliensis fibers. Procedia
Engineering 200: 244-251.
Englert,
C., Schwenke, A.M., Hoeppener, S., Weber, C. & Schubert, U.S. 2016.
Microwave-assisted polymer modifications. In Microwave-Assisted
Polymer Synthesis, edited by Hoogenboom, R., Schubert, U.S. &
Wiesbrock, F. Switzerland: Springer Nature. hlm. 209-240.
Fathilah,
W.F.W. & Othaman, R. 2019. Electrospun cellulose fibres and
applications. Sains Malaysiana 48(7):
1459-1472.
Gan,
S., Zakaria, S., Chia, C.H., Padzil, F.N.M. & Ng, P. 2015. Effect of
hydrothermal pretreatment on solubility and formation of kenaf cellulose
membrane and hydrogel. Carbohydrate
Polymers 115: 62-68.
Hamzah,
N., Tokimatsu, K. & Yoshikawa, K. 2019. Solid fuel from oil palm biomass
residues and municipal solid waste by hydrothermal treatment for electrical
power generation in Malaysia: A review. Sustainability 11(4): 1060.
Ibrahim, I., Hassan, M.A., Abd-Aziz,
S., Shirai, Y., Andou, Y., Othman, M.R., Ali, A.A.M. & Zakaria, M.R. 2017.
Reduction of residual pollutants from biologically treated palm oil mill
effluent final discharge by steam activated bioadsorbent from oil palm biomass. Journal of Cleaner Production 141:
122-127.
Jandura, P., Riedl, B. & Kokta,
B.V. 2000. Thermal degradation behavior of cellulose fibers partially esterifed
with some long chain organic acids. Polymer
Degradation and Stability 70: 387-394.
Khalid,
W.E.F.W., Heng, L.Y. & Arip, M.N.M. 2018. Surface modification of cellulose
nanomaterial for urea biosensor application. Sains Malaysiana 47(5): 941-949.
Le Normand, M., Moriana, R. &
Ek, M. 2014. Isolation and characterization of cellulose nanocrystals from
spruce bark in a biofinery perspective. Carbohydrate
Polymers 111: 979-987.
Mazlan,
N.S.N., Zakaria, S., Gan, S., Hua, C.C. & Baharin, K.W. 2019. Comparison of
regenerated cellulose membrane coagulated in sulphate-based coagulant. Cerne 25(1): 18-24.
Melo, D., Oliveira, S.N., de Freitas
Barros, F.C., Raulino, G.S.C., Vidal, C.B. & Nascimento, R.F. 2016.
Chemical modifications of lignocellulosic materials and their application for
removal of cations and anions from aqueous solutions. Journal of Applied Polymer Science 133: 43286.
Mudhoo,
A., Garg, V.K. & Wang, S. 2012. Removal of heavy metals by
biosorption. Environmental Chemistry
Letters 10(2): 109-117.
Pan,
Z., Wang, K., Wang, Y., Tsiakaras, P. & Song, S. 2018. In-situ electrosynthesis of hydrogen peroxide and wastewater
treatment application: A novel strategy for graphite felt activation. Applied Catalysis B: Environmental 237:
392-400.
Qaiser,
A.A. & Hyland, M.M. 2010. X-ray photoelectron spectroscopy characterization
of polyaniline-cellulose ester composite membranes. In Materials Science Forum. Trans Tech
Publications Ltd. 657: 35-45.
Rahayu,
D.E., Wirjodirdjo, B. & Hadi, W. 2019. Availability of empty fruit bunch as
biomass feedstock for sustainability of bioenergy product (system dynamic approach). In AIP Conference Proceedings. AIP Publishing LLC. 2194(1):
020095.
Rantuch,
P. & Chrebet, T. 2014. Thermal decomposition of cellulose insulation. Cellulose Chemical Technology 48(5-6):
461-467.
Razali,
N.F., Chin Hua, C., Zakaria, S., Sajab, M.S., Tobe, T. & Tsuda, M. 2020.
Penyahwarnaan efluen kilang minyak kelapa sawit (POME) melalui proses
pengoksidaan fenton secara berterusan menggunakan limonit sebagai
pemangkin. Sains Malaysiana 49(1): 69-74.
Saad,
M.J., Chin Hua, C., Zakaria, S., Sajab, M.S. & Misran, S. 2020. Malaysia
rice wastes for activated carbon production. In Proceeding - 9th Kuala Lumpur International Agriculture, Forestry and
Plantation Conference (KLIAFP9). hlm. 20-26.
Sajab,
M.S., Chia, C.H., Chan, C.H., Zakaria, S., Kaco, H., Chook, S.W. & Chin,
S.X. 2016. Bifunctional graphene oxide - cellulose nanofibril aerogel loaded
with Fe (III) for the removal of cationic dye via simultaneous adsorption and
Fenton oxidation. RSC Advances 6(24): 19819-19825.
Sajab,
M.S., Chia, C.H., Zakaria, S. & Sillanpää, M. 2017. Adsorption of heavy
metal ions on surface of functionalized oil palm empty fruit bunch fibers:
single and binary systems. Sains
Malaysiana 46(1): 157-165.
Salleh,
K.M., Zakaria, S., Sajab, M.S., Gan, S., Chia, C.H., Jaafar, S.N.S. &
Amran, U.A. 2018. Chemically crosslinked hydrogel and its driving force towards
superabsorbent behaviour. International
Journal of Biological Macromolecules 118: 1422-1430.
Samiran, N.A., Jaafar, M.N.M.,
Chong, C.T. & Jo-Han, N. 2015. A review of palm oil biomass as a feedstock
for syngas fuel technology. Jurnal
Teknologi (Sciences & Engineering) 72: 13-18.
Sakaguchi,
M., Ohura, T., Iwata, T., Takahashi, S., Akai, S., Kan, T., Murai, H.,
Fujiwara, M., Watanabe, O. & Narita, M. 2010. Diblock copolymer of
bacterial cellulose and poly (methyl methacrylate) initiated by chain-end-type
radicals produced by mechanical scission of glycosidic linkages of bacterial
cellulose. Biomacromolecules 11(11):
3059-3066.
Senna,
A.M., Novack, K.M. & Botaro, V.R. 2014. Synthesis and characterization of
hydrogels from cellulose acetate by esterification crosslinking with EDTA
dianhydride. Carbohydrate Polymers 114:
260-268.
Senna,
A.M., do Carmo, J.B., da Silva, J.M.S. & Botaro, V.R. 2015. Synthesis,
characterization and application of hydrogel derived from cellulose acetate as
a substrate for slow-release NPK fertilizer and water retention in soil. Journal of Environmental Chemical
Engineering 3(2): 996-1002.
Sheltami,
R.M., Kargarzadeh, H. & Abdullah, I. 2015. Effects of silane surface
treatment of cellulose nanocrystals on the tensile properties of cellulose-polyvinyl
chloride nanocomposite. Sains Malaysiana 44(6): 801-810.
Smith,
B.C. 2018. The C= O bond, part III: Carboxylic acids. Spectroscopy 33(1): 14-20.
Stevulova,
N., Cigasova, J., Estokova, A., Terpakova, E., Geffert, A., Kacik, F.,
Singovszka, E. & Holub, M. 2014. Properties characterization of chemically
modified hemp hurds. Materials 7(12): 8131-8150.
Wang,
X., Tang, C., Wang, Q., Lu, Y. & Liu, X. 2018. Thermal stability
improvement of polysiloxane-grafted insulating paper cellulose in micro-water
environment. AIP Advances 8(10):
105007.
Yagyu,
H., Saito, T., Isogai, A., Koga, H. & Nogi, M. 2015. Chemical modification
of cellulose nanofibers for the production of highly thermal resistant and
optically transparent nanopaper for paper devices. ACS Applied Materials and Interfaces 7(39): 22012-22017.
Yan,
E.Y.C., Zakaria, S., Chia, C.H. & Boku, T. 2017. Bifunctional regenerated
cellulose membrane containing TiO2 nanoparticles for absorption and
photocatalytic decomposition. Sains
Malaysiana 46(4): 637-644.
Yao,
Y. & Wang, H. 2018. An overview on chemical modification of cellulose. Materials Reports 32(19): 3478-3488.
Zhou,
L., Ke, K., Yang, M.B. & Yang, W. 2020. Recent progress on chemical
modification of cellulose for high mechanical-performance poly (lactic
acid)/cellulose composite: A short review. Composites Communications 2020: 100548.
*Pengarang untuk surat-menyurat; email: kushairisalleh@ukm.edu.my
|