Sains Malaysiana 50(2)(2021): 327-337
http://dx.doi.org/10.17576/jsm-2021-5002-05
Carotenogenesis in Nannochloropsis oculata under
Oxidative and Salinity Stress
(Karotenogenesis dalam Nannochloropsis oculata di bawah Tekanan Oksidatif dan Saliniti)
AISAMUDDIN ARDI ZAINAL ABIDIN1,2, CHOTIKA YOKTHONGWATTANA3 & ZETTY NORHANA BALIA YUSOF1,2*
1Department of Biochemistry, Faculty of
Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
2Laboratory of Marine Biotechnology, Institute of
Bioscience, Universiti Putra Malaysia, 43400 UPM
Serdang, Selangor Darul Ehsan, Malaysia
3Department of Biochemistry, Kasetsart University, Bangkok 10900, Thailand
Diserahkan: 21 Oktober 2018/Diterima: 20 Julai 2020
ABSTRACT
Nannochloropsis oculata is a unicellular
microalgae which is vastly found throughout the environment and have
been widely studied due to its high productivity of secondary metabolites and
oil content. It is majorly cultured in the aquaculture sector as fish feed and
for industries for its polyunsaturated fatty acids. This work aims to study the
impact of salinity and oxidative stress on the expression of carotenoid
biosynthesis genes and the accumulation of their products in N. oculata via qPCR and HPLC analyses. Three genes responsible for production
of high value carotenoids namely lycopene beta-cyclase (CrTL-B/LCYB), beta-carotene oxygenase (CrTO) and beta-carotene hydroxylase (CrTR) under different stresses and time points
were identified and quantified, and the amount of their products namely
β-carotene, zeaxanthin, canthaxanthin, and astaxanthin was measured. N. oculata was treated with different concentrations of
Cu2+ ion (1, 2, and 5 ppm) and NaCl (50, 150, 250 mM) which
resembles conditions of oxidative and salinity stress, respectively. RNA and
carotenoids extraction, RT-PCR, qPCR and HPLC was carried out in order to
identify the correlation of carotenogenesis genes
expression with carotenoids production. Under exposure of
both treatments, the carotenoids biosynthesis genes were upregulated up to 6-fold
compared to control and targeted carotenoids were overexpressed up to 7-fold.
Results from this study gave insights which are beneficial in understanding
microalgae’s responses towards abiotic stress via the synthesis of carotenoids.
Keywords: Carotenoids; carotenogenesis; Nannochloropsis oculata; oxidative stress; salinity stress
ABSTRAK
Nannochloropsis oculata ialah mikroalga unisel yang banyak ditemui di alam
sekitar dan telah dikaji secara meluas kerana produktiviti tinggi metabolit
sekunder dan kandungan minyaknya. Kebanyakannya digunakan di dalam sektor
akuakultur sebagai makanan ikan dan di dalam sektor industri untuk asid lemak
tak tepu. Kajian ini bertujuan untuk melihat kesan saliniti dan tekanan oksidatif
pada pengekspresan gen biosintesis karotenoid dan pengumpulan kandungan
karotenoid dalam N. oculata melalui qPCR dan analisis HPLC. Pengekspresan tiga gen
yang bertanggungjawab untuk menghasilkan karotenoid bernilai tinggi iaitu
beta-siklase likopin (CrTL-B / LCYB), beta-karoten oksigen (CrTO) dan
beta-karoten hidroksilase (CrTR) telah dianalisa di bawah tekanan yang berbeza
dan jumlah penghasilan produk akhir iaitu β-karoten, zeaxantin, cantaxantin dan astaxantintelah diukur. N. oculata telah dirawat dengan kepekatan ion Cu2+ yang berbeza (1, 2 dan 5 ppm) dan NaCl (50, 150, 250
mM) yang menyerupai keadaan tekanan oksidatif dan salin. Pengekstrakan RNA dan karotenoid, RT-PCR, qPCR dan HPLC dilakukan untuk mengenal pasti korelasi ekspresi gen carotenogen dengan pengeluaran karotenoid. Di
bawah pendedahan kedua-dua tekanan, pengekspresan gen biosintesis karotenoid
telah meningkat sehingga 6 kali ganda berbanding dengan kawalan dan karotenoid
yang dihasilkan meningkat sehingga 7 kali ganda. Keputusan daripada kajian ini
memberikan pandangan yang bermanfaat dalam memahami tindak balas mikroalga
terhadap tekanan abiotik melalui sintesis karotenoid.
Kata kunci: Karotenoid; karotenogenesis; Nannochloropsis oculata; tekanan oksidatif; tekanan saliniti
RUJUKAN
Abidin, A.A.Z., Wong, S.Y., Rahman,
N.S.A., Idris, Z.H.C. & Balia Yusof, Z.N. 2016.
Osmotic, oxidative and salinity stresses upregulate the expressions of thiamine
(Vitamin B1) biosynthesis genes (THIC and THI1/THI4) in oil palm (Elaies guineensis). Journal
of Oil Palm Research 28(28): 308-319.
Azim,
N.H., Subki, A. & Yusof, Z.N.B. 2018. Abiotic stresses induce total phenolic,
total flavonoid and antioxidant properties in Malaysian indigenous microalgae
and cyanobacterium. Malaysian
Journal of Microbiology 14(1):
25-33.
Borowitzka, M.A. 2013. High-value products
from microalgae-their development and commercialisation. Journal of
Applied Phycology 25(3): 743-756.
Borowitzka, M.A., Borowitzka,
L.J. & Kessly D. 1990. Effects of salinity
increase on carotenoid accumulation in the green alga Dunaliella salina. Journal of Applied Phycology 2(2): 111-119.
Borowitzka, L.J. & Borowitzka,
M.A. 1989. β-carotene (provitamin A) production with algae. Biotechnology of vitamins, pigments and
growth factors. In Elsevier Applied Biotechnology Series, edited
by Borowitzka: Elsevier. pp. 15-26.
Cremen, M.C.M., Martinez-Goss, M.R., Corre Jr., V.L. & Azanza,
R.V. 2007. Phytoplankton bloom in commercial shrimp ponds using green-water
technology. Journal of Applied Phycology 19(6): 615-624.
Chen,
Y., Li, D., Lu, W., Xing, J., Hui, B. & Han, Y. 2003. Screening and
characterization of astaxanthin-hyperproducing mutants of Haematococcus pluvialis. Biotechnolology Letters 25(7): 527-529.
Erdmann,
N. & Hagemann, M. 2001. Salt acclimation of algae and cyanobacteria: A
comparison. In Algal Adaptation to Environmental Stresses, edited by
Erdmann, N. & Hagemann M. Berlin,
Heidelberg: Springer. pp. 323-361.
Fern,
L.L., Abidin, A.A.Z. & Yusof, Z.N.B. 2017.
Upregulation of thiamine (vitamin B1) biosynthesis gene upon stress application
in Anabaena sp. and Nannochloropsis oculata. Journal of Plant Biotechnology 44(4): 462-471.
Garg, S., Wang, L. & Schenk, P.M. 2015.
Flotation separation of marine microalgae from aqueous medium. Separation
and Purification Technology 156:
636-641.
Goodwin,
T.W. 1980. Biosynthesis of carotenoids. In The Biochemistry of the
Carotenoids, edited by Goodwin, T.W. Dordrecht:
Springer. pp. 33-76.
Gu,
N., Lin, Q., Li, G., Qin, G., Lin, J. & Huang, L. 2012. Effect of salinity
change on biomass and biochemical composition of Nannochloropsis oculata. Journal
of World Aquaculture Society 43(1): 97-106.
Habib,
M.A.B., Phang, S.M., Kamarudin,
M.S. & Mohamed, S. 1998. Chemical characteristics and essential nutrients
of agro-industrial effluents in Malaysia. Asian Fisheries 11(3-4): 279-286.
Hossain,
A.B.M.S., Salleh, A., Boyce, A.N., Chowdhury, P. & Naqiuddin,
M. 2008. Biodiesel fuel production from algae as renewable energy. American
Journal of Biochemistry and Biotechnology 4(3):
250-254.
Ip, P.F. & Chen, F. 2005. Employment of
reactive oxygen species to enhance astaxanthin formation in Chlorella zofingiensis in heterotrophic culture. Process
Biochemistry 40(11): 3491-3496.
Khairy,
H.M. 2009. Toxicity and accumulation of copper in Nannochloropsis oculata (Eustigmatophyceae, Heterokonta). World
Applied Science Journal 6(3): 378-384.
Kobayashi,
M., Kurimura, Y. & Tsuji, Y. 1997.
Light-independent, astaxanthin production by the green microalga Haematococcus pluvialis under salt stress. Biotechnology
Letters 19(6): 507-509.
Küpper,
H., Götz, B., Mijovilovich,
A., Küpper, F.C. & Meyer-Klaucke,
W. 2009. Complexation and toxicity of copper in higher plants. I.
Characterization of copper accumulation, speciation, and toxicity in Crassula helmsii as a
new copper accumulator. Plant Physiology 151(2): 702-714.
Lembi, C.A. & Waaland,
J.R. 1988. Algae and Human Affairs. New York: Cambridge University
Press. pp. 87-181.
Lemoine, Y. & Schoefs,
B. 2010. Secondary ketocarotenoid astaxanthin biosynthesis in algae: A
multifunctional response to stress. Photosynthesis Research 106(1-2):
155-177.
Lesser, M.P. 2006. Oxidative stress in marine
environments: Biochemistry and physiological ecology. Annual Review of
Physiology 68: 253-278.
Liu, B.H. & Lee, Y.K. 2000. Secondary
carotenoids formation by the green alga Chlorococcum sp. Journal of
Applied Phycology 12(3-5):
301-307.
Lorenz, R.T. & Cysewski,
G.R. 2000. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology 18(4): 160-167.
Lubián, L.M.,
Montero, O., Moreno-Garrido, I., Huertas, I.E., Sobrino,
C., González-del Valle, M. & Parés, G. 2000. Nannochloropsis (Eustigmatophyceae)
as source of commercially valuable pigments. Journal of Applied
Phycology 12(3-5): 249-255.
Mallick, N. 2004. Copper-induced oxidative stress
in the chlorophycean microalga Chlorella vulgaris:
Response of the antioxidant system. Journal of Plant Physiology 161(5):
591-597.
Maznah, W.W.,
Al-Fawwaz, A.T. & Surif,
M. 2012. Biosorption of copper and zinc by immobilised and free algal biomass,
and the effects of metal biosorption on the growth and cellular structure of Chlorella sp. and Chlamydomonas sp. isolated from rivers in Penang, Malaysia.
Journal of Environmental Sciences 24(8): 1386-1393.
Milledge, J.J. 2011. Commercial application of
microalgae other than as biofuels: A brief review. Reviews in Environmental
Science Biotechnology 10(1): 31-41.
Mendes, A., Reis, A., Vasconcelos, R., Guerra, P.
& Da Silva, T.L. 2009. Crypthecodinium cohnii with emphasis on DHA production: A review. Journal
of Applied Phycology 21(2): 199-214.
Mulders, K.J., Lamers,
P.P., Martens, D.E. & Wijffels, R.H. 2014.
Phototrophic pigment production with microalgae: Biological constraints and
opportunities. Journal of Phycology 50(2): 229-242.
Natrah,
F.M.I., Yusoff, F.M., Shariff, M., Abas, F. &
Mariana, N.S. 2007. Screening of Malaysian indigenous microalgae for
antioxidant properties and nutritional value. Journal of Applied Phycology 19(6): 711-718.
Ort, D.R. & Baker, N.R. 2002. A photoprotective
role for O2 as an alternative electron sinks in photosynthesis? Current
Opinion in Plant Biology 5(3):
193-198.
Pal, D., Khozin-Goldberg,
I., Cohen, Z. & Boussiba, S. 2011. The effect of
light, salinity and nitrogen availability on lipid production by Nannochloropsis sp. Applied Microbioliogy and Biotechnology 90(4): 1429-1441.
Pfaffl, M.W.
2004. Quantification strategies in real-time PCR. In Applied Microbiology, edited by Pfaffl, M.W. Semantic Scholar. pp. 53-62.
Pinto, F.L., Thapper, A., Sontheim, W. & Lindblad, P. 2009. Analysis of
current and alternative phenol based RNA extraction methodologies for
cyanobacteria. BMC Molecular Biology 10(1): 79.
Ratledge, C.
2004. Fatty acid biosynthesis in microorganisms being used for single cell oil
production. Biochimie 86(11): 807-815.
Santabarbara, S., Agostini, A., Casazza, A.P., Zucchelli, G. & Carbonera, D.
2015. Carotenoid triplet states in photosystem II: Coupling with low-energy
states of the core complex. BBA-Bioenergetics 1847(2): 262-275.
Sarada, R., Tripathi, U. &
Ravishankar, G.A. 2002. Influence of stress on astaxanthin production in Haematococcus pluvialis grown under different culture conditions. Process Biochemistry 37(6): 623-627.
Shaari, A.L., Surif,
M., Latiff, F.A., Omar, W.M.W. & Ahmad, M.N.
2011. Monitoring of water quality and microalgae species composition of Penaeus monodon ponds in Pulau Pinang, Malaysia. Tropical Life Sciences Research 22(1): 51-69.
Singh,
S., Kate, B.N. & Banerjee, U.C. 2005. Bioactive compounds from
cyanobacteria and microalgae: An overview. Critical Reviews in Biotechnology 25(3): 73-95.
Srivastava,
A.K., Bhargava, P. & Rai, L.C. 2005. Salinity and copper-induced oxidative
damage and changes in the antioxidative defence systems of Anabaena doliolum. World Journal of Microbioliogy and Biotechnology 21(6-7):
1291-1298.
Steinbrenner, J. & Sandmann,
G. 2006. Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for
accelerated astaxanthin biosynthesis. Applied and Environmental Microbiology 72(12): 7477-7484.
Stephens,
E., Ross, I.L., King, Z., Mussgnug, J.H., Kruse, O., Posten, C., Borowitzka, M.A.
& Hankamer, B. 2010. An economic and technical
evaluation of microalga biofuels. Nature Biotechnology 28(2): 126-128.
Takaichi, S. 2011. Carotenoids in algae:
Distributions, biosynthesis and functions. Marine Drugs 9(6): 1101-1118.
Telfer,
A. 2005. Too much light? How β-carotene protects the photosystem II reaction
centre. Photochemical and Photobiological Sciences 4(12):
950-956.
Tjahjono, A.E., Hayama,
Y., Kakizono, T., Terada, Y., Nishio, N. & Nagai,
S. 1994. Hyper-accumulation of astaxanthin in a green alga Haematococcus pluvialis at elevated temperatures. Biotechnology
Letters 16(2): 133-138.
Van Heukelem, L. & Thomas, C.S. 2001.
Computer-assisted high-performance liquid chromatography method development
with applications to the isolation and analysis of phytoplankton pigments. Journal
of Chromatography A 910(1):
31-49.
Vieler, A., Wu, G., Tsai, C.H., Bullard,
B., Cornish, A.J., Harvey, C. & Campbell, M.S. 2012. Genome, functional
gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genetics 8(11): e1003064.
Wang, D., Ning, K., Li, J., Hu, J., Han, D., Wang,
H. & Chang, X. 2014. Nannochloropsis genomes reveal evolution of microalgal oleaginous traits. PLoS Genetics 10(1):
e1004094.
Wijffels, R.H., Barbosa, M.J. & Eppink, M.H. 2010. Microalgae for the production of bulk
chemicals and biofuels. Biofuels Bioproducts and Biorefining 4(3): 287-295.
Ye, Z.W., Jiang, J.G. & Wu, G.H. 2008.
Biosynthesis and regulation of carotenoids in Dunaliella:
Progresses and prospects. Biotechnology Advances 26(4): 352-360.
*Pengarang untuk surat-menyurat;
email: zettynorhana@upm.edu.my
|