Sains Malaysiana 50(3)(2021):
571-593
http://doi.org/10.17576/jsm-2021-5003-02
Seasonal Effects on Spatial Variations of
Surface Water Quality in a Tropical River Receiving Anthropogenic Influences
(Kesan Bermusim ke atas Variasi Ruang Kualiti
Permukaan Air di Sungai Tropika yang Menerima Pengaruh Antropogen)
TENGKU NILAM BAIZURA TENGKU IBRAHIM1,2,
FARIDAH OTHMAN3*, NOOR ZALINA MAHMOOD1 & TAHER ABUNAMA3,4
1Department of Environmental Management, Institute of
Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala
Lumpur, Federal Territory, Malaysia
2Department of Environmental Health, Faculty of Health
Sciences, MAHSA University, Jln SP 2, Bandar Saujana Putra, 42610 Jenjarom, Selangor
Darul Ehsan, Malaysia
3Department of Civil Engineering, Faculty of Engineering,
University of Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia
4Institute of Water and Wastewater Technology, Durban
University of Technology, Musgrave, Berea, South Africa
Diserahkan: 30 Disember 2019/Diterima: 8 Ogos
2020
ABSTRACT
This study investigates the seasonal and spatial
water quality patterns along a tropical river that continuously receives
various pollution sources. Multivariate analysis was used to study the spatial
and temporal variations of the water quality parameters and to determine the
origin of the pollution sources. Three regions (low, moderate, and high
pollution levels) were determined based on cluster analysis. The stepwise DA
mode proposed six parameters (pH, EC, COD, NO3, TC, and Fe) with 75%
correct assignations as the most significant water quality parameters to
present the spatial variations. In the temporal discrimination, forward
stepwise mode analysis showed eight parameters (EC, TUR, BOD, COD, AN, NO3,
Cu, and Cr) with 92% correct assignations, while five parameters (EC, AN, Al,
Cu, and Cr) affording 89% correct assignations in backward stepwise mode
analysis. Principal component analysis and factor analysis were used to
investigate the origins of each water quality parameter based on the three
clustered regions and successfully yielded eight latent factors loadings for
each period that significantly identified the pollution sources and types along
the river. The pollution sources for moderate and high pollution level areas
are anthropogenic sources (landfill, industrial activities, and sewage
discharge). Agricultural runoff is the main pollution source for the low
pollution level areas. This study has shown classifications of river water
quality based on seasonal and spatial criteria.
Keywords: Multivariate analysis; pollutants;
spatial and seasonal variation; water quality
ABSTRAK
Penyelidikan ini mengkaji corak kualiti air
bermusim dan ruang di sepanjang sungai tropika menerima pelbagai sumber
pencemaran. Analisis multivariat digunakan untuk mengkaji variasi ruang dan
temporal parameter kualiti air dan mengenal pasti sumber pencemaran. Tiga
kumpulan (tahap pencemaran rendah, sederhana dan tinggi) ditentukan berdasarkan
analisis kelompok. Mod DA langkah demi langkah mencadangkan enam parameter (pH,
EC, COD, NO3, TC dan Fe) dengan 75% penetapan yang betul sebagai
parameter kualiti air yang paling signifikan untuk menunjukkan variasi ruang.
Dalam diskriminasi temporal, analisis mod bertahap maju menunjukkan lapan
parameter (EC, TUR, BOD, COD, AN, NO3, Cu dan Cr) dengan 92%
penetapan yang betul, sementara lima parameter (EC, AN, Al, Cu dan Cr)
memberikan 89% penugasan yang betul dalam analisis mod bertahap mundur.
Analisis komponen utama dan analisis faktor digunakan untuk mengkaji asal-usul
setiap parameter kualiti air berdasarkan ketiga-tiga kelompok. Sumber
pencemaran untuk kawasan paras pencemaran yang sederhana dan tinggi adalah
sumber antropogenik (tapak pelupusan, aktiviti industri, pelepasan kumbahan).
Larian air pertanian adalah sumber pencemaran utama bagi kawasan paras
pencemaran yang rendah. Kajian ini telah mendedahkan pengelasan kualiti air
sungai berdasarkan kriteria bermusim dan ruang.
Kata kunci: Analisis multivariat; bahan cemar; kualiti air;
variasi ruang dan bermusim
RUJUKAN
Abunama, T., Othman, F., Ansari, M. &
El-Shafie, A. 2019. Leachate generation rate modeling using artificial
intelligence algorithms aided by input optimization method for an MSW landfill. Environmental Science and Pollution
Research 26(4): 3368-3381.
Abunama, T., Othman, F. & Younes, M.K. 2018.
Predicting sanitary landfill leachate generation in humid regions using ANFIS
modeling. Environmental Monitoring and
Assessment 190(10): 597.
Ahmed, M.F., Mokhtar, M., Alam, L., Ta, G.C.,
Ern, L.K. & Khalid, R.M. 2018. Recognition of local authority for better
management of drinking water at the Langat River Basin, Malaysia. International Journal of Engineering &
Technology 7(3.30): 148-154.
Alssgeer, H.M.A., Gasim, M.B., Hanafiah, M.M.,
Abdulhadi, E.R.A. & Azid, A. 2018. GIS-based analysis of water quality
deterioration in the Nerus River, Kuala Terengganu, Malaysia. Desalination and Water Treat 112: 334-343.
APHA. 1988. Standard
Methods for Examination of Water and Waste Water. 17th ed. Washington DC:
American Public Health Association.
Barakat, A., El Baghdadi, M., Rais, J.,
Aghezzaf, B. & Slassi, M. 2016. Assessment of spatial and seasonal water
quality variation of Oum Er Rbia River (Morocco) using multivariate statistical
techniques. International Soil and Water
Conservation Research 4(4): 284-292.
Bian, Z., Liu, L. & Ding, S. 2019.
Correlation between spatial-temporal variation in landscape patterns and
surface water quality: A case study in the Yi River Watershed, China. Applied Sciences 9(6): 1053.
Cano-Rocabayera, O., de Sostoa, A., Padros, F.,
Cardenas, L. & Maceda-Veiga, A. 2019. Ecologically relevant biomarkers
reveal that chronic effects of nitrate depend on sex and life stage in the
invasive fish Gambusia holbrooki. PLoS ONE 14(1): e0211389.
Chatanga, P., Ntuli, V., Mugomeri, E., Keketsi,
T. & Chikowore, N.V. 2019. Situational analysis of physico-chemical,
biochemical and microbiological quality of water along Mohokare River, Lesotho. The Egyptian Journal of Aquatic Research 45(1): 45-51.
Corsino, S.F., Capodici, M., Di Trapani, D.,
Torregrossa, M. & Viviani, G. 2020. Assessment of landfill leachate
biodegradability and treatability by means of allochthonous and autochthonous
biomasses. New Biotechnology 55:
91-97.
Cunha, D.G.F., Sabogal-Paz, L.P. & Dodds,
W.K. 2016. Land use influence on raw surface water quality and treatment costs
for drinking supply in São Paulo State (Brazil). Ecological Engineering 94: 516-524.
Department of Environmental. 2017. Environmental
Quality Report.
Department of Environmental. 2015. Environmental
Quality Report.
Dobsa, J., Meznaric, V., Tompic, T., Legen, S.
& Zeman, S. 2014. Evaluation of spatial and temporal variation in water
contamination along Croation Highways by multivariate exploratory analysis. Water Air Soil Pollution 186(10):
6867-6878.
Ebrahimi, M., Gerber, E.L. & Rockaway, T.D.
2017. Temporal performance assessment of wastewater treatment plants by using
multivariate statistical analysis. Journal
of Environmental Management 193: 234-246.
Edokpayi, J., Odiyo, J., Popoola, O. &
Msagati, T. 2016. Assessment of trace metals contamination of surface water and
sediment: A case study of Mvudi River, South Africa. Sustainability 8(2): 135.
Elfithri, R., Toriman, M.E., Mokhtar, M.B. &
Juahir, H. 2011. Perspectives and initiatives on integrated river basin
management in Malaysia: A review. The
Social Sciences 6(2): 169-176.
Elias, M.S., Ibrahim, S., Samuding, K., Ab
Rahman, S., Wo, Y.M. & Daung, J.A.D. 2018. Multivariate analysis for source
identification of pollution in sediment of Linggi River, Malaysia. Environmental Monitoring and Assessment 190(4): 257.
Garson, G.D. 2012. Testing Statistical Assumptions. Asheboro, NC: Statistical
Associates Publishing.
Georgieva, N., Yaneva, Z. & Kostadinova, G.
2013. Analyses and assessment of the spatial and temporal distribution of
nitrogen compounds in surface waters. Water
and Environment Journal 27(2): 187-196.
Hair, J.F., Black, W.C., Babin, B.J., Anderson,
R.E. & Tatham, R.L. 1998. Multivariate
Data Analysis. Volume 5. Upper Saddle River, NJ: Prentice Hall. pp.
207-219.
Hajigholizadeh, M. & Melesse, A.M. 2017.
Assortment and spatiotemporal analysis of surface water quality using cluster
and discriminant analyses. Catena 151: 247-258.
Horn, A.H., Torres, I.C., Ribeiro, E.V. &
Junior, A.P.M. 2017. Relationship between metal water concentration and
anthropogenic pressures in a Tropical Watershed, Brazil. Geochimica Brasiliensis 30(2): 158.
Idris, A.B., Mamun, A.A., Amin, M., Soom, M.,
Noor, W. & Azmin, W. 2003. Review of water quality standards and practices
in Malaysia. Pollution Research 22(2): 145-155.
Jaishankar, M., Tseten, T., Anbalagan, N.,
Mathew, B.B. & Beeregowda, K.N. 2014. Toxicity, mechanism and health
effects of some heavy metals. Interdisciplinary
Toxicology 7(2): 60-72.
Le, T.T.H., Zeunert, S., Lorenz, M. & Meon,
G. 2017. Multivariate statistical assessment of a polluted river under
nitrification inhibition in the tropics. Environmental
Science and Pollution Research 24(15): 13845-13862.
Liu, D. & Zou, Z. 2012. Water quality
evaluation based on improved fuzzy matter-element method. Journal of Environmental Sciences 24(7): 1210-1216.
Matta, G. 2015. Evaluation and prediction of
deviation in physic-chemical characteristics of River Ganga. International Journal of Advancements in
Research and Technology 4(6): 14-30.
Mavukkandy, M.O., Karmakar, S. & Harikumar,
P. S. 2014. Assessment and rationalization of water quality monitoring network:
A multivariate statistical approach to the Kabbini River (India). Environmental Science and Pollution Research 21(17): 10045-10066.
McKinley, K., McLellan, I., Gagné, F. &
Quinn, B. 2019. The toxicity of potentially toxic elements (Cu, Fe, Mn, Zn and
Ni) to the cnidarian Hydra attenuata at environmentally relevant concentrations. Science
of the Total Environment 665: 848-854.
Mousa, I.E., Emara, I.K., Farfour, S.A. &
Eldourghamy, A.S. 2018. Microbial profile and its changing rates of Lake
Burullus, Egypt as wastewater receiving body. Water and Environment Journal 32(1): 67-74.
Ogwueleka, T.C. 2014. Assessment of the water
quality and identification of pollution sources of Kaduna River in Niger State
(Nigeria) using exploratory data analysis. Water
and Environment Journal 28(1): 31-37.
Ojok, W., Wasswa, J. & Ntambi, E. 2017.
Assessment of seasonal variation in water quality in River Rwizi using
multivariate statistical techniques, Mbarara Municipality. Uganda. Journal Water Resource Protection 9(1):
83-97.
Othman, F., Alaa Eldin, M.E. & Mohamed, I.
2012. Trend analysis of a tropical urban river water quality in Malaysia. Journal of Environmental Monitoring 14:
3164.
Psaltopoulos, D., Wade, A.J., Skuras, D.,
Kernan, M., Tyllianakis, E. & Erlandsson, M. 2017. False positive and false
negative errors in the design and implementation of agri-environmental
policies: A case study on water quality and agricultural nutrients. Science of The Total Environment 575:
1087-1099.
Sarkar, S.K., Saha, M., Takada, H., Bhattacharya,
A., Mishra, P. & Bhattacharya, B. 2007. Water quality management in the
lower stratch of the River Ganges, East Coast of India: An approach through
environmental education. Journal of
Cleaner Production 15: 1559-1567.
Stevenson, R.J. & Rollins, S.L. 2017.
Ecological assessment with benthic algae. In Methods in Stream Ecology. New
York: Academic Press. pp. 277-292.
Stefania, B., Calabrò, P.S., Rosa, G. &
Moraci, N. 2018. Selective removal of heavy metals from landfill leachate by
reactive granular filters. Science of The
Total Environment 644: 335-341.
USEPA. 2001. Parameters
of Water Quality: Interpretation and Standards. Environmental Protection Agency.
Johnstown Castle, Co. Wexford, Ireland.
Van Ael, E., Belpaire, C., Breine, J.,
Geeraerts, C., Van Thuyne, G., Eulaers, I. & Bervoets, L. 2014. Are
persistent organic pollutants and metals in eel muscle predictive for the
ecological water quality? Environmental
Pollution 186: 165-171.
VishnuRadhan, R., Zainudin, Z., Sreekanth, G.B.,
Dhiman, R., Salleh, M.N. & Vethamony, P. 2017. Temporal water quality
response in an urban river: A case study in Peninsular Malaysia. Applied Water Science 7(2): 923-933.
Voyles, J., Vredenburg, V.T., Tunstall, T.S.,
Parker, J.M., Briggs, C.J. & Rosenblum, E.B. 2012. Pathophysiology in
mountain yellow-legged frogs (Rana
muscosa) during a chytridiomycosis outbreak. PLoS ONE 7(4): 353-374.
Wang, Z., Meador, J.P. & Leung, K.M. 2016.
Metal toxicity to freshwater organisms as a function of pH: A meta-analysis. Chemosphere 144: 1544-1552.
Wu, Z., Wang, X., Chen, Y., Cai, Y. & Deng,
J. 2018. Assessing river water quality using water quality index in Lake Taihu
Basin, China. Science of The Total
Environment 612: 914-922.
Yan, J., Xu, Z., Yu, Y., Xu, H. & Gao, K.
2019. Application of a hybrid optimized BP network model to estimate water
quality parameters of Beihai Lake in Beijing. Applied Sciences 9(9): 1863.
Zhang, L., Zou, Z. & Shan, W. 2017.
Development of a method for comprehensive water quality forecasting and its
application in Miyun reservoir of Beijing, China. Journal of Environmental Sciences 56: 240-246.
Zhang, Y., Xu, M., Li, X., Qi, J., Zhang, Q.,
Guo, J., Yu, L. & Zhao, R. 2018. Hydrochemical characteristics and
multivariate statistical analysis of natural water system: A case study in
Kangding County, Southwestern China. Water 10(1): 80.
*Pengarang untuk surat-menyurat; email:
faridahothman@um.edu.my
|