Sains Malaysiana 50(4)(2021): 1007-1016
http://doi.org/10.17576/jsm-2021-5004-11
Kaedah Gelombang Mikro; Alternatif Sintesis Sebatian Heterosiklik Konvensional
(Microwave
Technique; Alternative for Synthesis Conventional Heterocyclic Compounds)
AZWAN MAT LAZIM1*, ATISYA ROHADI1, SITI AISHAH
HASBULLAH1, MAZLAN MOHAMAD2 & A.L. ZUL ARIFF2
1Jabatan Kimia, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Universiti Malaysia Kelantan, 17600
UMK Jeli, Kelantan Darul Naim, Malaysia
Diserahkan: 12 Februari 2020/Diterima: 29 September 2020
ABSTRAK
Gelombang mikro ialah gelombang elektromagnetik yang mempunyai kemampuan untuk proses pemanasan dalam menjalankan tindak balas kimia khususnya dalam sintesis sebatian heterosiklik. Penggunaan kaedah gelombang ini adalah salah satu alternatif untuk memperbaiki atau meningkatkan tahap kecekapan suatu tindak balas dengan mengurangkan masa tindak balas malah meningkatkan peratusan hasil yang diperoleh.
Kata kunci: Gelang; gelombang; heterosiklik; mikro; sintesis
ABSTRACT
Microwave is an electromagnetic
wave that has heating process ability to carry out chemical reactions
especially in synthesizing heterocyclic compounds. This technique was used as
an alternative to improve or increased a reaction efficiency by reducing
reaction time and also raised the yields.
Keywords: Heterocyclic; micro; ring; synthesis; wave
RUJUKAN
Achelle, S., Baudequin,
C. & Plé, N. 2013. Luminescent materials
incorporating pyrazine or quinoxaline moieties. Dyes and Pigments 98(3):
575-600.
Ajani, O.O., Obafemi, C.A., Ikpo,
C.O., Ajanaku, K.O., Ogunniran,
K.O. & James, O.O. 2009. Comparative study of microwave assisted and
conventional synthesis of novel quinoxalinone-3-hydrazone derivatives and its
spectroscopic properties. International Journal of Physical Sciences 4(4): 156-164.
Amin,
K.M., Taha, A.M., George, R.F., Mohamed, N.M. & Elsenduny,
F.F. 2018. Synthesis, antitumor activity evaluation and DNA-binding study of
coumarin-based agents. Archiv Der Pharmazie 351(1): 1700199.
Barachevsky, V.A., Strokach,
Y.P., Puankov, Y.A., Kobeleva,
O.I., Valova, T.M., Levchenko, K.S. & Yaroshenko, V.N. 2009. Light-sensitive heterocyclic
compounds for information nanotechnologies. ARKIVOC 5: 70-95.
Besson, T. &Thiéry, V. 2006. Microwave-assisted aynthesis of sulfur and
nitrogen-containing heterocycles. Topics in Heterocyclic
Chemistry 1:
59-78.
Chaubey, A. & Pandeya,
S.N. 2011. Pyridine" a versatile nucleuse in
pharmaceutical field. Asian Journal of Pharmaceutical and Clinical Research 4(4): 5-8.
Chauhan,
M. & Kumar, R. 2015. A comprehensive review on bioactive fused heterocycles
as purine-utilizing enzymes inhibitors. Medicinal Chemistry Research 24(6):
2259-2282.
Chhajed, S.S., Upasani,
C.D., Bastikar, V.A. & Mahajan, N.P. 2010.
Synthesis, physicochemical properties and biological evaluation of some novel
5-[2-methyl/(un) substituted phenylethylidene amino]
quinolin-8-ols. Journal of Pharmacy Research 3(6): 1-3.
Cho, Y.J., Lee, S.H., Bae, J.W., Pyun, H. & Yoon, C.M. 2000. Fisher’s base as a
protecting group: Protection and deprotection of 2-hydroxybenzaldehydes. Tetrahedron
Letters 41(20): 3915-3917.
Danks, T.N. 1999. Microwave assisted
synthesis of pyrroles. Tetrahedron Letter 40(20): 3957-3960.
De la Hoz, A. & Loupy, A. 2012. Microwaves
in Organic Synthesis. 3rd ed. Weinheim, Germany: Wiley-VCH.
Dragutan, I., Dragutan,
V., Delaude, L. & Demonceau,
A. 2005. N-Heterocyclic carbenes as highly efficient ancillary ligands in
homogeneous and immobilized metathesis ruthenium catalytic systems. ARKIVOC 10: 206-253.
Elizalde, L.E., de los Santos, G.,
García, A.E., Medellı´n, D.I. & Acosta, R.
2005. Synthesis of novel photochromic 6-benzyloxo-spirobenzopyran compounds. Synthetic
Communications 35(24): 3087-3097.
Fadda, A.A., Abdel-Latif, E. & El-Mekawy, R.E. 2012. Synthesis of some new arylazothiophene and arylazopyrazole derivatives as antitumor agents. Pharmacology & Pharmacy 3(2):
148-157.
Fu, P.P.,
Xia, Q., Lin, G. & Chou, M.W. 2004. Pyrrolizidine alkaloids-genotoxicity,
metabolism enzymes, metabolic activation, and mechanisms. Drug Metabolism
Reviews 36(1): 1-55.
Gilchrist, T.L. 1992. Heterocyclic Chemistry. 3rd ed. Addison Wesley Longman, London: Longman. pp. 1-372.
Glowacki, E.D., Voss, G., Leonat, L., Irimia-Vladu, M.,
Bauer, S. & Sariciftci, N.S. 2012. Indigo and tyrian purple - from ancient natural dyes to modern organic
semiconductors. Israel Journal of Chemistry 52(6): 540-551.
Haddach, A.A., Kellemanb,
A. & Deaton-Rewolinski, M.V. 2002. An
efficient method for the N-debenzylation of aromatic heterocycles. Tetrahedron
Letters 43(3): 399-402.
Hameda, O.A., Mehdawia,
N., Tahac, A.A., Hamedb,
E.M., Al-Nuria, M.A. & Hussein, A.S. 2013. Synthesis and antibacterial
activity of novel curcumin derivatives containing heterocyclic moiety. Iranian
Journal of Pharmaceutical Research 12(1): 47-56.
Hayes, B.L. 2004. Recent advances
in microwaveassisted synthesis. Aldrichimica ACTA 37(2): 66-76.
Hitchings,
G.H. 1978. Uric acid: Chemistry and synthesis. In Uric Acid edited by
Hitchings, G.H. Berlin, Heidelberg: Springer. pp. 1-20.
Hu, X.L.,
Gao, C., Xu, Z., Liu, M.L., Feng, L.S. & Zhang, G.D. 2018. Recent
development of coumarin derivaties as potential antiplasmodial and antimalarial agents. Current Topics
in Medicinal Chemistry 18(2): 114-123.
Jones,
R.A. 1990. Pyrroles: The Synthesis and the Physical and Chemical Aspects of the
Pyrrole Ring. New York: John Wiley & Sons, Inc.
pp. 1-742.
Kamil,
A., Akhtar, S., Farrukh, M., Hassan, S. & Jahan, S. 2013. Antibacterial and
antifungal profile of 2-(2´-pyridyl) benzimidazole derivatives. European
Academic Research 1(8): 2051-2058.
Katritzky, A.R. & Singh, S.K. 2003.
Microwave-assisted heterocyclic synthesis. ARKIVOC 13: 68-86.
Kappe, C.O. 2004. Controlled
microwave heating in modern organic synthesis. Angewandte Chemie International Edition 43(46): 6250-6284.
Khan, N.R. & Rathod, V.K. 2018.
Microwave assisted enzymatic synthesis of speciality esters: A mini-review. Process
Biochemistry 75: 89-98.
Landertshamer, S. & Schwarzinger,
C. 2011. On the oxidation of allylmelamines. Journal
of Unsolved Questions 2(1): 5-8.
Lenzen, S., Tiedge,
M., Jörns, A. & Munday, R.1996. Alloxan
derivatives as a tool for the elucidation of the mechanism of the diabetogenic
action of alloxan. In Lessons from Animal Diabetes, edited by Lenzen, S., Tiedge, M., Jörns, A. & Munday, R. Boston: Birkhäuser.
pp. 113-122.
Lidstrӧm, P., Tierney, J., Wathey, B. & Westman, J. 2001. Microwave assisted
organic synthesis - A review. Tetrahedron 57(2001): 9225-9283.
Mahajan, K., Swami, M. & Singh, R.V. 2009. Microwave
synthesis, spectral studies, antimicrobial approach, and coordination behavior of antimony (III) and bismuth (III) compounds with
benzothiazoline. Russian Journal of Coordination Chemistry 35(3):
179-185.
Mahmood, K. & Hadi,
A.H.A. 1998. Kimia Heterosiklik. Kuala Lumpur: Dewan Bahasa dan Pustaka.
Mohanan, K., Kumari, B.S. & Rijulal, G. 2008. Microwave assisted synthesis,
spectroscopic, thermal, and antifungal studies of some lanthanide (III)
complexes with a heterocyclic bishydrazone. Journal
of Rare Earths 26(1): 16-21.
Preigh, M.J., Stauffer, M.T., Lin, F.
& Weber, S.G. 1996. Anodic oxidation mechanism of a spiropyran. Journal of the Chemical
Society, Faraday
Transactions 92(20): 3991-3996.
Quin,
L.D. & Tyrell, J.A. 2010. Fundamentals of Heterocyclic Chemistry:
Importance in Nature and in the Synthesis of Pharmaceuticals. New York:
John Wiley & Sons, Inc.
Ravichandran,
S. & Karthikeyan, E. 2011. Microwave synthesis - A potential tool for green
chemistry. International Journal of ChemTech Research 3(1): 466-470.
Ren, J.
& Tian, H. 2007. Thermally stable merocyanine form of photochromic spiropyran with aluminum ion as a
reversible photo-driven sensor in aqueous solution. Sensors 7(12):
3166-3178.
Shaker, R.M., Mahmoud, A.F. &
Abdel-Latif, F.F. 2005. Facile one pot microwave assisted solvent-free
synthesis of novel spiro-fused pyran derivatives via the three-component condensation of ninhydrin with malononitrile and active
methylene compounds. Journal of the Chinese Chemical Society 52(3):
563-567.
Sharma, K., Singh, R., Fahmi, N.
& Singh, R.V. 2010. Microwave assisted synthesis, characterization and
biological evaluation of palladium and platinum complexes with azomethines. Spectrochimica Acta Part A: Molecular and
Biomolecular Spectroscopy 75(1): 422-427.
Silvia, T.R., Ana, V.S.L. &
González, E.A.S. 1995. Novel syntheses of spiropyran photochromatic compounds using ultrasound. Synthetic Communications 25(1): 105-110.
Surati, M.A., Jauhari, S. &
Desai, K.R. 2012. A brief review: Microwave assisted organic reaction. Archives of Applied Science
Research 4(1): 645-661.
Tandon,
R., Singh, I., Luxami, V., Tandon, N. & Paul, K.
2019. Recent advances and developments of in vitro evaluation of
heterocyclic moieties on cancer cell lines. The Chemical Record 19(2-3):
362-393.
Vačková, M. & Petro, M. 1986. Some
heterocyclic azo-compounds as analytical reagents. 24.
2-(2-hydroxynaphthylazo)-7-oxo-5, 5-dimethyl-4, 5, 6, 7-tetrahydrobenzothiazole
as a chelate-forming extraction reagent for copper (II), zinc (II), nickel
(II), and cadmium (II). Chemical Papers 40(2): 247-255.
Van der Eycken, E., De Borggraeve, W., Dallinger, D., Dehaen, W. & Kappe, C.O. 2002. High-speed microwave-promoted hetero-diels-alder reactions of 2(1H)-pyrazinones in ionic liquid doped solvents. The Journal of Organic Chemistry 67(22):
7904-7907.
Widelski, J., Luca, S.V., Skiba, A., Chinou, I., Marcourt, L., Wolfender, J.L. & Skalicka-Wozniak,
K. 2018. Isolation and antimicrobial activity of coumarin derivatives from
fruits of Peucedanum luxurians Tamamsch. Molecules 23(5): 1222.
Yagi, S., Maeda, K. & Nakazumi, H. 1999. Photochromic properties of cationic
merocyanine dyes. Thermal stability of the spiropyran form produced by irradiation with visible light. Journal of Materials
Chemistry 9(12): 2991-2997.
Yu, Z.
& Zhang, H. 2004. Ethanol fermentation of acid-hydrolyzed cellulosic pyrolysate with Saccharomyces
cerevisiae. Bioresource Technology 93(2): 199-204.
Zakhs, É.R., Martynova,
V.M. & Éfros, L.S. 1979. Synthesis and properties of spiropyrans that are capable of reversible opening of the pyran ring. Chemistry of Heterocyclic
Compounds 15(4): 351-372.
*Pengarang untuk surat-menyurat; email: azwanlazim@ukm.edu.my
|