Sains Malaysiana 50(6)(2021): 1563-1575

http://doi.org/10.17576/jsm-2021-5006-05

 

Kesan Suhu dan Bahan Tambah Abu Terbang terhadap Pencirian Mekanik Bata daripada Sisa Rawatan Air Mentah

(Effects of Temperature and Fly Ash Additive on Mechanical Characteristics of Brick from Raw Water Treatment Sludge)

 

ZULFAHMI ALI RAHMAN*, AKRIMI MASWA OTHMAN, WAN MOHD. RAZI IDRIS & TUKIMAT LIHAN

 

Pusat Sains Bumi dan Alam Sekitar, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 11 Mei 2020/Diterima: 8 Oktober 2020

 

ABSTRAK

Penggunaan semula sisa dalam pembangunan bata giat diusahakan dan beberapa pengubahsuaian dilakukan bagi menghasilkan produk bata yang berkualiti baik dan selamat. Suhu merupakan antara faktor yang mempengaruhi cirian mekanik bata. Oleh itu, objektif kajian ini adalah untuk melihat pengaruh suhu dan abu terbang (RAM) terhadap sifat mekanik bata yang dihasilkan daripada campuran sisa rawatan air mentah (RAM). Dua jenis sampel bata disediakan melibatkan bata 100% sisa RAM (RAM100) dan bata campuran 80% sisa RAM dan 20% AT (RAM80). Kedua-dua jenis sampel dikenakan suhu pembakaran berbeza (tanpa bakar, 500 °C, 700 °C) selama tiga jam. Ujian larutresap turut dilakukan bagi mengenal pasti kepekatan logam berat yang hadir dalam bata. Pencirian mekanik bagi penyusutan linear menunjukkan peningkatan dengan pertambahan suhu. Kehadiran sisa AT meningkatkan nilai penyusutan linear yang lebih tinggi berbanding bata berasaskan RAM (RAM100) apabila suhu meningkat daripada 350 kepada 700 °C. Nilai ketumpatan kedua-dua jenis bata turut menyusut dengan peningkatan suhu namun meningkat semula pada suhu yang lebih tinggi (700 °C). Kedua-dua jenis bata juga menunjukkan peningkatan penyerapan air dengan peningkatan suhu. Kehadiran AT turut mengurangkan nilai serapan air berbanding bata RAM100. Kekuatan mampatan bata meningkat dengan peningkatan suhu dan bata RAM100 menunjukkan corak peratus peningkatan yang ketara berbanding bata RAM80. Namun, daripada perspektif peratusan, kehadiran AT menunjukkan peratusan pertambahan kekuatan mampatan yang ketara berbanding bata RAM100. Daripada hasil ujian larutresap dan cirian mekanik yang dilakukan, sisa rawatan air dan abu terbang berpotensi digunakan sebagai bahan asas dalam pembangunan bata dan beberapa pengubahsuaian diperlukan bagi mencapai piawaian yang ditetapkan sebagai bahan binaan alternatif.

 

Kata kunci: Abu terbang; bata; kekuatan mampatan; larutresap; sisa rawatan air mentah

 

ABSTRACT

Re-utilization of wastes in brick development has been progressively carried out and several modifications have been done to produce brick with good quality and safe. Temperature is among the factors that control the mechanical properties of brick. Therefore, the objective of this study was to investigate the effects of temperature and fly ash on mechanical properties of brick from raw water treatment sludge (RAM). Two types of brick samples were prepared included brick with 100% of RAM (RAM100) and brick from mixture of 80% of RAM and 20% AT (RAM80). Both samples were treated with different firing temperatures (unfired, 500 °C, 700 °C) for 3 h. Leaching test was also conducted to identify the concentration of the present heavy metals in the brick. The mechanical characteristic of linear shrinkage showed an increasing trend with the increase in temperature. The presence of AT increased the value of linear shrinkage compared to brick with RAM base (RAM100) as the temperatures were increased from 350 to 700 °C. The density of both bricks also decreased with increasing temperature, however, increased back at higher temperature (700 °C). Both bricks showed increased in water absorption with increased temperatures. Presence of AT also decreased the value of water absorption when compared with RAM100 brick. The compressive strength of brick increased with increasing temperature and RAM100 brick showed apparently higher percentage than RAM80 brick. Role of AT also significantly increased the percentage of compressive strength compared to that brick of RAM100. Based on the results of leaching tests and mechanical characteristics, the raw water treatment sludge and fly ash are potentially re-utilized as base material in development of brick and several modifications are required to achieve the regulated standard as alternative construction material.

 

Keywords: Brick; compressive strength; fly ash; leaching; raw water treatment sludge

 

RUJUKAN

Abdul, A.K. & Mohajerani, A. 2013. Physical and mechanical properties of fired clay bricks incorporated with cigarette butts: Comparison between slow and fast heating rates. Applied Mechanics and Materials 421: 201-204.

Ahmari, S. & Zhang, L. 2012. Production of eco-friendly bricks from copper mine tailings through geopolymerization. Construction and Building Materials 29: 323-331.

Akinshipe, O. & Kornellus, G. 2017. Chemical and thermodynamic processes in clay brick firing technologies and associated atmospheric emissions metrics - A review. Journal of Pollution Effects & Control 5(2): 1-12.

Ali Rahman, Z., Hamid, N.M., Rahim, S.A., Idris, W.M.R. & Lihan, T. 2016. Pencirian mekanikal bata daripada campuran sisa rawatan air (DWS) dan abu terbang (FA) (Mechanical characterization of brick from mixture of water treatment sludege and rice ash ash). In Proceedings National Geoscience Conference.

Ali Rahman, Z., Mohd Saleh, N.S., Idris, W.M.R. & Lihan, T. 2019. Thermal effect on mechanical characteristics of drinking water sludge brick incorporated with rice husk ash. Sains Malaysiana 48(11): 2541-2549.

Anyakora, N.V. 2013. Characterisation and performance evaluation of water works sludge as brickmaterial. International Journal of Engineering and Applied Sciences 3(3): 69-79.

Anyakora, N.V., Ajinomoh, C.S., Ahmed, A.S., Mohammed-Dabo, I.A., Ibrahim, J. & Anto, J.B. 2012. Sustainable technology-based strategy for processing water works sludge for resource utilization. World Journal of Engineering and Pure and Applied Sciences 2(5): 161-168.

ANSI/AN-16.1-2003 (American Nuclear Society). Measurement of the Leachability of Solidified Low-Level Radioactive Wastes by a Short-Term Test Procedure, Illinois.

Arman Ali, Z. 2005. Properties of Malaysian fired clay bricks and their evaluation with international Masonry specifications - a case study. PhD Thesis. Universiti Teknologi Malaysia (tidak diterbitkan).

Chen, Y., Zhang, Y., Chen, T., Zhao, Y. & Bao, S. 2011. Preparation of eco-friendly MS76 construction bricks from hematite tailings. Construction and Building Materials 25(4): 2107-2111.

Chiang, K.Y., Chou, P.H., Chien, K.L., Chen, J.L. & Wu, C.C. 2009. Novel lightweight building bricks manufactured from water treatment plant sludge and agricultural waste. Journal of Residuals Science & Technology 6(4): 185-191.

Davraz, M. & Gunduz, L. 2005. Engineering properties of amorphous silica as a new natural pozzolan for use in concrete. Cement and Concrete Research 35(7): 1251-1261.

Diop, M.B., Grutzeck, M.W. & Molez, L. 2011. Comparing the performances of bricks made with natural clay and clay activated by calcination and addition of sodium silicate. Applied Clay Sciences 54(2): 172-178.

Fungaro, D.A. & da Silva, M.V. 2014.  Utilization of water treatment plant sludge and coal fly ash in brick manufacturing. American Journal of Environmental Protection 2(5): 83-88.

Hegazy, B.E.E., Fouad, H.A. & Hassanain, A.M. 2012. Incorporation of water sludge, silica fume and rice husk ash in brick making. Advances in Environmental Research 1(1): 83-96.

Hiwot, M.G., Quezon, E.T. & Kebede, G. 2017. Comparative study on compressive strength of locally produced fired clay bricks and stabilized clay bricks with cement and lime. Global Scientific Journal 5(12): 147-157.

Jabatan Perangkaan Malaysia 2019. Anggaran Penduduk Semasa 2018-2019. Saiz dan Pertumbuhan Penduduk. Ketua Perangkaan Malaysia, Jabatan Perangkaan Malaysia, JPM. https://www.dosm.gov.my.

Johari, I., Said, S., Hisham, B., Bakar, A. & Ahmad, Z.A. 2010. Effect of the change of firing temperature on microstructure and physical properties of clay bricks from Beruas (Malaysia). Science of Sintering 42(2): 245-254.

Joshi, S. & Shrivastava, K. 2011. Recovery of alum coagulant from water treatment plant sludge: A greener approach for water purification. International Journal of Advanced Computer Research 1(2): 101-103.

Karaman, S., Ersahin, S. & Gunal, H. 2006. Firing temperature and firing time influence on mechanical and physical properties of clay bricks. Journal of Scientific & Industrial Research 65: 153-159.

Krishnan, P. & Jewaratnam, J. 2017. Recovery of water treatment residue into clay bricks. Chemical Engineering Transactions 56: 1837-1842.

Madurwar, M.V., Ralegaonkar, R.V. & Mandavgane, S.A. 2013. Application of agro-waste for sustainable construction materials: A review. Construction and Building Materials 38(1): 872-878.

Mageed, A.A., Rizk, S.H. & Abu-Ali, M.H. 2011. Utilization of water treatment plants sludge ash in brick making. Journal of Engineering Sciences 39(1): 195-206.

Prabakar, J. Dendorkar, N. & Morchhale, R.K. 2004. Influence of fly ash on strength behavior of typical soils. Construction and Building Materials 18(4): 263-267.

Presertsan, S. & Theppaya, T. 1995. A study towards energy saving in brick making: Part 1 Keyparameters for energy saving. International Energy Journal 17(2): 145-156.

Puppala, A.J. & Musenda, C. 2000. Effects of fiber reinforcement on strength and volume change in expansive soils. Transportation Research Record 1736(1): 134-140.

Riza, F.V., Rahman, I.A. & Ahmad Zaidi, A.M. 2010. A brief review of compressed stabilized earth brick (CSEB). In International Conference on Science and Social Research.

Sanga, P., Iradukunda, Y. & Munyemana, J.C. 2018. Recycling of alum from water treatment residue and reuse it as a flocculating agent for raw water treatment. Journal of Geoscience and Environment Protection 6(12): 216-226.

Sukkae, R., Suebthawilkul, S. & Cherdhirunkorn, B. 2018. Utilization of coal fly ash as a raw material for refractory production. Journal of Metals, Materials & Minerals 28(1): 116-123.

Tantawy, M.A. & Mohamed, R.S. 2017. Middle Eocene clay from Goset Abu Khashier: Geological assessment and utilization with drinking water treatment sludge in brick manufacture. Applied Clay Science 138: 114-124.

Tsega, E., Mosisa, A. & Fufa, F. 2017. Effects of firing time and temperature on physical properties of fired clay bricks. American Journal of Civil Engineering 5(1): 21-26.

USEPA. 1996. Hazardous Waste Characteristics Scoping Study. US Environmental Protection Agency, Office of Solid Waste.

Wang, S.D., Scrivener, K.L. & Pratt, P.L. 1994. Factors affecting the strength of alkali-activated slag. Cement and Concrete Research 24(6): 1033-1043.

Xu, L., Wei, G., Tao, W. & Yang, N. 2005. Study on fired bricks with replacing clay by fly ash in high volume ratio. Construction and Building Materials 19(3): 243-247.

Zhang, L. 2013. Production of bricks from waste materials - A review. Construction and Building Materials 1(47): 643-655.

 

*Pengarang untuk surat-menyurat; email: zarah1970@ukm.edu.my

 

 

 

sebelumnya