Sains Malaysiana 50(7)(2021): 2025-2034

http://doi.org/10.17576/jsm-2021-5007-17

 

Effect of Multi-Sized Graphite Filler on the Mechanical Properties and Electrical Conductivity

(Kesan Pengisi Grafit Berbilang Saiz pada Sifat Mekanikal dan Kekonduksian Elektrik)

 

NABILAH AFIQAH MOHD RADZUAN1,2*, ABU BAKAR SULONG1,2 & ISWANDI3

 

1Precision Research Group, Department of Mechanical and Manufacturing, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Fuel Cell Plate Material and Manufacture Group, Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Department of Mechanical Engineering, Institut Teknologi Medan, Medan, Indonesia

 

Diserahkan: 7 Ogos 2020/Diterima: 30 November 2020

 

ABSTRACT

This research successfully fabricated conductive polymer composites (CPCs) prepared using multiple sizes of graphite filler (40, 100, 150, and 200 µm) that provided excellent network formation within the fillers and polypropylene matrix which further improved both electrical conductivity and flexural strength. An important discussion on the fabrication technique, including compression moulding and injection moulding was conducted, to manufacture CPC materials with a thickness less than 3 mm. The findings of this study suggested that fabricating CPCs using the compression moulding technique with a graphite composition of 75 wt. % exhibited better network connectivity as the electrical conductivity increased to 15 Scm-1. Also, compared to the three sizes of graphite filler (40/100/200 µm) it resulted in 13 Scm-1, with two sizes (40/200 µm) reporting better electrical conductivity at 15 Scm-1. This demonstrated that the addition of multiple sizes was not necessarily due to agglomeration occurring. The resultant graphite composites of 40/200 µm possessed a more stable structure having a thin composite layer (2.5 mm) which promoted better electrical conductivity suitable for bipolar plate used in proton exchange membrane fuel cells.

 

Keywords: Carbon; composites; electrical conductivity; fuel cells; mechanical properties

 

ABSTRAK

Kajian ini berjaya menghasilkan konduktif polimer komposit (KPK) dengan menggunakan beberapa jenis saiz pengisi grafit (40, 100, 150 dan 200 µm) yang berupaya menghasilkan jaringan elektrik yang cemerlang antara pengisi dan matrik polimer sekaligus meningkatkan nilai keberaliran elektrik dan kekuatan tegangan. Perbincangan penting ditekankan pada kaedah pembuatan termasuk penggunaan kaedah pembentukan mampatan dan pengacuan suntikan dalam pembikinan bahan KPK berketebalan kurang 3 mm. Penemuan kajian ini menunjukkan pembuatan bahan KPK menggunakan kaedah pembentukan mampatan pada komposisi grafit sebanyak 75 % bt. mampu menghasilkan jaringan keberaliran elektrik yang baik dengan nilai keberaliran elektrik direkodkan sebanyak 15 Scm-1. Perbandingan ke atas tiga saiz pengisi grafit berbeza iaitu (40/100/200 µm) memperoleh nilai keberaliran elektrik sebanyak 13 Scm-1 manakala penggunaan dua saiz pengisi grafit memperoleh nilai sebanyak 15 Scm-1 iaitu jauh lebih baik. Keadaan ini menunjukkan bahawa pertambahan saiz berbeza tidak semestinya meningkatkan nilai keberaliran elektrik kesan daripada pergumpalan yang lebih mudah berlaku. Kajian menunjukkan komposit grafit dengan saiz 40/200 µm mempunyai struktur yang lebih stabil serta nilai keberaliran elektrik lebih tinggi dengan ketebalan 2.5 mm bersesuaian dengan aplikasinya sebagai plat dwikutub dalam sel fuel membran penukar proton.

 

Kata kunci: Karbon; keberaliran elektrik; komposit; sel fuel; sifat mekanikal

 

RUJUKAN

Adloo, A., Sadeghi, M., Masoomi, M. & Pazhooh, H.N. 2016. High performance polymeric bipolar plate based on polypropylene/graphite/graphene/nano-carbon black composites for PEM fuel cells. Renewable Energy 99: 867-874.

Alegre, C., Álvarez-Manuel, L., Mustata, R., Valiño, L., Lozano, A. & Barreras, F. 2019. Assessment of the durability of low-cost Al bipolar plates for high temperature PEM fuel cells. International Journal of Hydrogen Energy 44(25): 12748-12759.

Antunes, R.A., De Oliveira, M.C.L., Ett, G. & Ett, V. 2011. Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: A review of the main challenges to improve electrical performance. Journal of Power Sources 196(6): 2945-2961.

Antunes, R.A., Oliveira, M.C.L., Ett, G. & Ett, V. 2010. Corrosion of metal bipolar plates for PEM fuel cells: A review. International Journal of Hydrogen Energy 35(8): 3632-3647.

Ardanuy, M., Rodríguez-Perez, M.A. & Algaba, I. 2011. Electrical conductivity and mechanical properties of vapor-grown carbon nanofibers/trifunctional epoxy composites prepared by direct mixing. Composites Part B: Engineering 42(4): 675-681.

Arutchelvi, J., Sudhakar, M., Arkatkar, A., Doble, M., Bhaduri, S. & Uppara, P.V. 2008. Biodegradation of polyethylene and polypropylene. Indian Journal of Biotechnology 7: 9-22.

Balogun, Y.A. & Buchanan, R.C. 2010. Enhanced percolative properties from partial solubility dispersion of filler phase in conducting polymer composites (CPCs). Composites Science and Technology 70(6): 892-900.

Breuer, O. & Sundararaj, U. 2004. Big returns from small fibers: A review of polymer/carbon nanotube composites. Polymer Composites 25(6): 630-645.

Chen, X., Deng, X., Kim, N.Y., Wang, Y., Huang, Y., Peng, L., Huang, M., Zhang, X., Chen, X., Luo, D. & Wang, B. 2018. Graphitization of graphene oxide films under pressure. Carbon 132: 294-303.

Hui, C., Liu, H.B., Li, J.X., Li, Y. & He, Y.D. 2009. Characteristics and preparation of polymer/graphite composite bipolar plate for PEM fuel cells. Journal of Composite Materials 43(7): 755-767.

Dhakate, S.R., Sharma, S., Borah, M., Mathur, R.B. & Dhami, T.L. 2008. Expanded graphite-based electrically conductive composites as bipolar plate for PEM fuel cell. International Journal of Hydrogen Energy 33(23): 7146-7152.

Folorunso, O., Hamam, Y., Sadiku, R., Ray, S.S. & Joseph, A.G. 2019. Parametric analysis of electrical conductivity of polymer-composites. Polymers 11(8): 1-20.

Fulmali, A.O., Sen, B., Ray, B.C. & Prusty, R.K. 2020. Effects of carbon nanotube/polymer interfacial bonding on the long-term creep performance of nanophased glass fiber/epoxy composites. Polymer Composites 41(2): 478-493.

Hamimah, A.R., Norhamidi, M. & Huda Abdullah, A.M. 2010. (La1-xSrx Co1-y Fey O3-d(LSCF) composite as durable cathode materials for intermediate-low temperature solid oxide fuel cell: Research review). Jurnal Kejuruteraan: 22: 1-10.

Heo, S.I., Yun, J.C., Oh, K.S. & Han, K.S. 2006. Influence of particle size and shape on electrical and mechanical properties of graphite reinforced conductive polymer composites for the bipolar plate of PEM fuel cells. Advanced Composite Materials: The Official Journal of the Japan Society of Composite Materials 15(1): 115-126.

Ismail, M.H., Muhamad, N. & Omar, M.A. 2008. Characterization of metal injection molding (MIM) feedstock based on water soluble binder system. Jurnal Kejuruteraan 20: 11-18.

Kuo, J.K. & Chen, C.K. 2006. A novel Nylon-6 - S316L fiber compound material for injection molded PEM fuel cell bipolar plates. Journal of Power Sources 162(1): 207-214.

Lee, J.H., Jang, Y.K., Hong, C.E., Kim, N.H., Li, P. & Lee, H.K. 2009. Effect of carbon fillers on properties of polymer composite bipolar plates of fuel cells. Journal of Power Sources 193(2): 523-529.

Leigh, S.J., Bradley, R.J., Purssell, C.P., Billson, D.R. & Hutchins, D.A. 2012. A simple, low-cost conductive composite material for 3D printing of electronic sensors. PLoS ONE 7(11): 1-6.

Li, M.K., Gao, C.X., Zhang, X., Zheng, W.T., Zhao, Z.D. & Meng, F.L. 2015. Electrical conductivity of calcined graphene oxide/diatomite composites with a segregated structure. Materials Letters 141: 125-127.

Li, X., Lan, S., Xu, Z., Jiang, T. & Peng, L. 2019. Thin metallic wave-like channel bipolar plates for proton exchange membrane fuel cells: Deformation behavior, formability analysis and process design. Journal of Power Sources 444(May): 227217.

Liu, S.H., Wu, M.Q., Rao, M.J., Li, L.H. & Xiao, H.L. 2019. Preparation, properties, and microstructure of graphite powder-containing conductive concrete. Strength of Materials 51(1): 76-84.

Lux, F. 1993. Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials. Journal of Materials Science 28(2): 285-301.

Martín, I.S., Ursúa, A. & Sanchis, P. 2014. Modelling of PEM fuel cell performance: Steady-state and dynamic experimental validation. Energies 7(2): 670-700.

Middelman, E., Kout, W., Vogelaar, B., Lenssen, J. & De Waal, E. 2003. Bipolar plates for PEM fuel cells. Journal of Power Sources 118(1-2): 44-46.

Mohd Radzuan, N.A., Yusuf Zakaria, M., Sulong, A.B. & Sahari, J. 2017a. The effect of milled carbon fibre filler on electrical conductivity in highly conductive polymer composites. Composites Part B: Engineering 110: 153-160.

Mohd Radzuan, N.A., Sulong, A.B. & Sahari, J. 2017b. A review of electrical conductivity models for conductive polymer composite. International Journal of Hydrogen Energy 42(14): 9262-9273.

Planes, E., Flandin, L. & Alberola, N. 2012. Polymer composites bipolar plates for PEMFCs. Energy Procedia 20: 311-323.

Pollet, B.G., Kocha, S.S. & Staffell, I. 2019. Current status of automotive fuel cells for sustainable transport. Current Opinion in Electrochemistry 16(2019): 90-95.

Qu, M., Nilsson, F., Qin, Y., Yang, G., Pan, Y., Liu, X., Rodriguez, G.H., Chen, J., Zhang, C. & Schubert, D.W. 2017. Electrical conductivity and mechanical properties of melt-spun ternary composites comprising PMMA, carbon fibers and carbon black. Composites Science and Technology 150: 24-31.

Radzuan, N.A.M., Sulong, A.B., Husaini, T., Majlan, E.H., Rosli, M.I. & Aman, M.F. 2019. Fabrication of multi-filler MCF/MWCNT/SG-based bipolar plates. Ceramics International 45(6): 7413-7418. doi:10.1016/j.ceramint.2019.01.028

Radzuan, N.A.M., Sulong, A.B. & Rao Somalu, M. 2017. Electrical properties of extruded milled carbon fibre and polypropylene. Journal of Composite Materials 51(22): 3187-3195.

Rozlosnik, N. 2009. New directions in medical biosensors employing poly(3,4-ethylenedioxy thiophene) derivative-based electrodes. Analytical and Bioanalytical Chemistry 395(3): 637-645.

Sharma, S. & Pollet, B.G. 2012. Support materials for PEMFC and DMFC electrocatalysts - A review. Journal of Power Sources 208: 96-119.

Shou, D., Tang, Y., Ye, L., Fan, J. & Ding, F. 2013. Effective permeability of gas diffusion layer in proton exchange membrane fuel cells. International Journal of Hydrogen Energy 38(25): 10519-10526.

Suherman, H., Sahari, J. & Sulong, A.B. 2013. Effect of small-sized conductive filler on the properties of an epoxy composite for a bipolar plate in a PEMFC. Ceramics International 39(6): 7159-7166.

Tavares, L.B., Rocha, R.G. & Rosa, D.S. 2017. An organic bioactive pro-oxidant behavior in thermal degradation kinetics of polypropylene films. Iranian Polymer Journal 26(4): 273-280.

Ul-Islam, M., Khan, S., Ullah, M.W. & Park, J.K. 2015. Bacterial cellulose composites: Synthetic strategies and multiple applications in bio-medical and electro-conductive fields. Biotechnology Journal 10(12): 1847-1861.

Wang, F., Sun, D.L., Hong, R.Y. & Kumar, M.R. 2017. Surface treatment of carbon nanoparticles by nitrogen/oxygen alternating current arc discharge and the application in ABS/EPDM composites. Composites Part B: Engineering 129(2017): 97-106.

Wang, W.L., He, S.M. & Lan, C.H. 2012. Protective graphite coating on metallic bipolar plates for PEMFC applications. Electrochimica Acta 62: 30-35.

Wang, Y., Leung, D.Y.C., Xuan, J. & Wang, H. 2016. A review on unitized regenerative fuel cell technologies, part-A: Unitized regenerative proton exchange membrane fuel cells. Renewable and Sustainable Energy Reviews 65: 961-977.

Wang, Z., Fan, X., Wang, K., Deng, H., Chen, F. & Fu, Q. 2011. Fabrication of polypropylene/carbon nanotubes composites via a sequential process of (rotating solid-state mixing)-plus-(melt extrusion). Composites Science and Technology 71(11): 1397-1403.

Yang, G., Yu, S., Kang, Z., Dohrmann, Y., Bender, G., Pivovar, B.S., Green Jr., J.B., Retterer, S.T., Cullen, D.A. & Zhang, F.Y. 2019. A novel PEMEC with 3D printed non-conductive bipolar plate for low-cost hydrogen production from water electrolysis. Energy Conversion and Management 182(February): 108-116.

Zakaria, M.Y., Sulong, A.B., Sahari, J. & Suherman, H. 2015. Effect of the addition of milled carbon fiber as a secondary filler on the electrical conductivity of graphite/epoxy composites for electrical conductive material. Composites Part B: Engineering 83: 75-80.

Zare, Y. & Rhee, K.Y. 2020. Effects of carbon nanotubes and interphase properties on the interfacial conductivity and electrical conductivity of polymer nanocomposites. Polymer International 69(4): 413-422.

Zare, Y. & Rhee, K.Y. 2019. Simplification and development of McLachlan model for electrical conductivity of polymer carbon nanotubes nanocomposites assuming the networking of interphase regions. Composites Part B: Engineering 156: 64-71.

 

*Pengarang untuk surat-menyurat; email: afiqah@ukm.edu.my

 

 

 

sebelumnya