Sains Malaysiana 50(8)(2021): 2329-2341

http://doi.org/10.17576/jsm-2021-5008-16

 

Characterization, Antioxidant and α-Glucosidase Inhibitory Activity of Collagen Hydrolysate from Lamuru (Caranx ignobilis) Fishbone

(Pencirian, Antioksidan dan Aktiviti Perencatan α-Glukosid Kolagen daripada Tulang Ikan Lamuru (Caranx ignobilis))

 

SYAMSU NUR1*, YOGILLVERD WIERSON1, YULIA3, FITRIYANTI JUMAETRI SAMI1, MEGAWATI1, ANDI NUR AISYAH2, MARWATI3 & SAHIBUDDIN A. GANI1

 

1Department of Pharmaceutical Chemistry, Sekolah Tinggi Ilmu Farmasi Makassar, 90242 Daya Makassar, Indonesia

 

2Department of Pharmaceutical Technology, Sekolah Tinggi Ilmu Farmasi Makassar, 90242 Daya Makassar, Indonesia

 

3Department of Pharmaceutical Biology, Sekolah Tinggi Ilmu Farmasi Makassar, 90242 Daya Makassar, Indonesia

 

Diserahkan: 10 Februari 2020/Diterima: 18 Disember 2020

 

ABSTRACT

The Lamuru fish (Caranx ignobilis) is mostly found in tropical waters of the indo-pacific region, namely Indonesia. It is believed to contain collagen and this study aims to isolate collagen from its bone and determine the collagen’s antioxidant and α-glucosidase inhibitory activity. In our study, the collagen was extracted using acetic acid which was hydrolyzed by collagenase enzyme from Clostridium histolyticum at a temperature of 37 °C, and pH 7.0. During hydrolysis, the degree of hydrolysis (DH) was calculated and collagen hydrolysates were characterized by SDS -PAGE, UV-Visible spectroscopy and FT-IR spectroscopy. After characterization, the collagen hydrolisate of lamuru ( CHL) fish was analyzed for its antioxidant properties and α-glucosidase inhibitory activity. The result shows that a higher percentage degree of hydrolysis was obtained, 31.17%, at 120 min of hydrolysis. The CHL characterization by SDS -PAGE showed its molecular weight ranging from 35,000-180,000 Daltons and identified the collagen as type I. The UV-Vis analysis of CHL provided a maximum absorbance at a wavelength of 233 nm. At the same time, the FT-IR analysis showed the presence of amides I, II, and III, which confirms the formation of the collagen triple helix. For its bioactivity assay, the CHL shows that CHL provided DPPH radical reduction activity reaching 51.45±1.24% (IC50 at 485.9 µg/mL). The ferric reduction antioxidant power of CHL (FRAP value) showed a significant reduction of Fe3+ to Fe2+ with a value of 711.27 µM/g. The CHL inhibition activity of α-glucosidase enzyme IC50 was determined to be 574 µg/mL. Based on the antioxidant bioactivity and α-glucosidase inhibition, the collagen peptide enables its use as a therapeutic development for a variety of disorders caused by oxidative stress, such as diabetes mellitus.

Keywords: α-glucosidase inhibitory; antioxidant; Caranx ignobilis; characterization; collagen hydrolysate (CHL)

 

ABSTRAK

Ikan Lamuru (Caranx ignobilis) adalah sejenis ikan yang hidup di perairan Indo-Pasifik khasnya Indonesia. Ia dipercayai mengandungi bahan kolagen dan kajian ini bertujuan untuk mengasingkan bahan kolagen daripada tulang ikan Lamuru serta menentukan aktiviti antioksidan dan perencatan oleh α-glukosid. Dalam kajian ini, kolagen daripada tulang ikan lamuru diekstrak menggunakan asid asetik dan kemudian dihidrolisis menggunakan enzim kolagenase daripada Clostridium histolyticum pada 37 °C, pH 7.0. Semasa hidrolisis, tahap hidrolisis (DH) telah dapat ditentukan. Kolagen tulang ikan Lamuru ( CHL ) dicirikan oleh SDS -PAGE, spektroskopi UV boleh nampak dan spektroskopi FT-IR. Setelah pencirian, CHL dianalisis aktiviti menghambat antioksidan dan α-glukosid. Keputusan menunjukkan bahawa tahap peratusan hidrolisis lebih tinggi berlaku pada 120 min dengan peratusan kadar hidrolisis sebanyak 31.71%. Pencirian CHL oleh SDS -PAGE memperoleh berat molekul purata antara 35,000-180,000 Dalton dan menunjukkan ia adalah merupakan jenis kolagen I. Analisis UV boleh nampak CHL menyediakan penyerapan maksimum pada panjang gelombang 233 nm. Pada masa yang sama, analisis FT-IR mengesan kehadiran amides I, II dan III yang menunjukkan formasi gandaan tiga heliks kolagen. Untuk ujian bioaktiviti, CHL menunjukkan bahawa CHL memberi aktiviti pengurangan radikal DPPH mencapai 51.45±1.24% (IC50 pada 485.9 μg/mL) dan kuasa antioksidan penurunan besi CHL (nilai FRAP), Fe3+ hingga Fe2+ bernilai 711.27 μM/g. CHL daripada tulang ikan mampu memerencat aktiviti enzim α-glukosid dengan nilai IC50 574 μg/mL. Berdasarkan pengujian bioaktiviti antioksidan dan penghambatan alfa glukosid sehingga kolagen peptida membolehkannya digunakan sebagai pengembangan terapi berkaitan dengan pelbagai sebab yang disebabkan oleh tekanan oksidatif seperti diabetes mellitus.

Kata kunci: Antioksidan; Caranx ignobilis; kolagen hidrolisat (CHL); pencirian; perencatan α-glukosid

 

RUJUKAN

Abuine, R., Rathnayake, A.U. & Byun, H.G. 2019. Biological activity of peptides purified from fish skin hydrolysates. Fisheries and Aquatic Sciences 22(2): 1-14.

Apak, R., Guclu, K., Demirata, B., Ozyurek, M., Celik, S.E., Bektasoglu, B., Berker, K.I. & Ozyurt, D. 2007. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 12(7): 1496-1547.

Bousopha, S., Nalinanon, S. & Sriket, C. 2016. Production of collagen hydrolysate with antioxidant activity from pharaoh cuttlefish skin. Chiang Mai University Journal of Natural Sciences 16(15(2)): 151-162.

Byun, H.G. & Kim, S.K. 2001. Purification and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Alaska pollack (Theragra chalcogramma) skin. Process Biochemistry 36(12): 1152-1162.

Carvalho, A.M., Marques, A.P., Silva, T.H. & Reis, R.L. 2018. Evaluation of the potential of collagen from codfish skin as a biomaterial for biomedical applications. Marine Drugs 16(12): 495.

Chi, C.F., Hu, F.Y., Wang, B., Li, Z.R. & Luo, H.Y. 2015. Influence of amino acid compositions and peptide profiles on antioxidant capacities of two protein hydrolysates from skipjack tuna (Katsuwonus pelamis) dark muscle. Marine Drugs 13(5): 2580-2601.

Cihan, A.C., Ozcan, B., Bubenheim, N.T. & Cokmus, C. 2010. Characterization of a thermostable α-glucosidase from Geobacillus thermodenitrificans F84a. In Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Spain: Research Center, Badajoz. pp. 945-955.

deMan, J.M. 1999. Protein. Principles of Food Chemistry. New York: Springer. pp. 111-162.

Ding, D., Du, B., Zhang, C., Zaman, F. & Huang, Y. 2019. Isolation and identification of an antioxidant collagen peptide from skipjack tuna (Katsuwonus pelamis) bone. RSC Advances 9: 27032-27041.

Elya, B., Basah, K., Mun’im, A., Yuliastuti, W., Bangun, A. & Septiana, E.K. 2012. Screening of α-glucosidase inhibitory activity from some plants of Apocynaceae, Clusiaceae, Euphorbiaceae, and Rubiaceae. Journal of Biomedicine and Biotechnology 2012: 281078.

Gómez-Guillén, M.C., Turnay, J., Fernandez-Diaz, M.D., Ulmo, N., Lizarbe, M.A. & Montero, P. 2002. Structural and physical properties of gelatin extracted from different marine species: A comparative study. Food Hydrocolloids 16(1): 25-34.

Haniffa, M.A.K., Sheela, P.A.Y., Kavitha, K. & Jais, A.M.M. 2014. Salutary value of haruan, the striped snakehead Channa striatus - a review. Asian Pacific Journal of Tropical Biomedicine 4(Supplement 1): S8-S15.

Haque, E. & Chand, R. 2008. Antihypertensive and antimicrobial bioactive peptides from milk proteins. European Food Research and Technology 227(1): 7-15.

Hong, G.P., Min, S.G. & Jo, Y.J. 2019. Anti-oxidative and anti-aging activities of porcine by-product collagen hydrolysates produced by commercial proteases: Effect of hydrolysis and ultrafiltration. Molecules 24(6): 1104.

Hoyer, B., Bernhardt, A., Lode, A., Heinemann, S., Sewing, J., Klinger, M., Notbohm, H. & Gelinsky, M. 2014. Jellyfish collagen scaffolds for cartilage tissue engineering. Acta Biomaterialia 10(2): 883-892.

Iba, Y., Yokoi, K., Eitoku, I., Goto, M., Koizumi, S., Sugihara, F., Oyama, H. & Yoshimoto, T. 2016. Oral administration of collagen hydrolysates improves glucose tolerance in normal mice through GLP-1-dependent and GLP-1-independent mechanisms. Journal of Medicinal Food 19(9): 836-843.

Jamilah, B., Razali, U.H.M., Hashim, D. & Sazili, A.Q. 2013. Properties of collagen from barramundi (Lates calcarifer) skin. International Food Research Journal 20(2): 791-798.

Kim, S.K. & Mendis, E. 2006. Bioactive compounds from marine processing byproducts - a review. Food Research International 39(4): 383-393.

Kong, J. & Yu, S. 2007. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochimica et Biophysica Sinica 39(8): 549-559.

Konrad, B., Anna, D., Marek, S., Marta, P., Aleksandra, Z. & Jozefa, C. 2014. The evaluation of dipeptidyl peptidase (DPP)-IV, α-glucosidase and angiotensin converting enzyme (ACE) inhibitory activities of whey proteins hydrolyzed with serine protease isolated from Asian pumpkin (Cucurbita ficifolia). International Journal of Peptide Research and Therapeutics 20(4): 483-491.

León-López, A., Fuentes-Jimenez, L., Hernandez-Fuentes, A.D., Campos-Montiel, R.G. & Aguirre-Alvarez, G. 2019. Hydrolysed collagen from sheepskins as a source of functional peptides with antioxidant activity. International Journal of Molecular Sciences 20(16): 3931.

Liang, Q., Wang, L., Sun, W., Wang, Z., Xu, J. & Ma, H. 2014. Isolation and characterization of collagen from the cartilage of Amur sturgeon (Acipenser schrenckii). Process Biochemistry 49(2): 318-323.

Liu, F., Liu, C.E., Lorena, D., Xiaoshuan, Z. & Fu, Z. 2012. Evaluation of the antioxidant activity of collagen peptide additive extracted from cod skin. Journal of Environmental Protection and Ecology 13(3): 1836-1841.

Liu, H., Li, D. & Guo, S. 2007. Studies on collagen from the skin of channel catfish (Ictalurus punctaus). Food Chemistry 101(2): 621-625.

Lorenzo, J.M., Munekata, P.E.S., Gomez, B., Barba, F.J., Leticia, M., Perez-Santaescolastica, C. & Fidel, T.V. 2018. Bioactive peptides as natural antioxidants in food products - a review. Trends in Food Science & Technology 79: 136-147.

Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. 1951. Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry 193: 265-275.

Mahboob, S. 2014. Isolation and characterization of collagen from fish waste material - skin, scales and fins of Catla catla and Cirrhinus mrigala. Journal of Food Science and Technology 52(7): 4296-4305.

Matmaroh, K., Benjakul, S., Prodpran, T., Encarnacion, A.B. & Kishimura, H. 2011. Characteristics of acid soluble collagen and pepsin soluble collagen from scale of spotted golden goatfish (Parupeneus heptacanthus). Food Chemistry 129(3): 1179-1186.

McPherson, R.A. 2011. Specific proteins. In Henry’s Clinical Diagnosis and Management by Laboratory Methods, edited by McPherson, R.A. & Pincus, M.R. Elsevier Health Sciences.

Mocan, E., Tagadiuc, O. & Nacu, V. 2011. Aspects of collagen isolation procedure. Clinical Research Studies 320: 1-5.

Muyonga, J.H., Cole, C.G.B. & Duodu, K.G. 2004. Characterisation of acid soluble collagen from skins of young and adult Nile perch (Lates niloticus). Food Chemistry 85(1): 81-89.

Nasri, R., Younes, I., Jridi, M., Trigui, M., Bougatef, A., Nedjar-Arroume, N., Dhulster, P., Nasri, M. & Chaabouni, M.K. 2013. ACE inhibitory and antioxidative activities of Goby (Zosterissessor ophiocephalus) fish protein hydrolysates: Effect on meat lipid oxidation. Food Research International 54(1): 552-561.

Nur, S., Jannah, C., Winarni, D., Rahman, D.A., Hamdayani, L.A. & Sami, F.J. 2019. Total phenolic and flavonoid compounds, antioxidant and toxicity profile of extract and fractions of paku atai tuber (Angiopteris ferox Copel). Food Research 3(6): 734-740.

Ogawa, M., Moody, M.W., Portier, R.J., Bell, J., Schexnayder, M.A. & Losso, J.N. 2003. Biochemical properties of black drum and sheepshead seabream skin collagen. Journal of Agricultural and Food Chemistry 51(27): 8088-8092.

Pal, G.K. & Suresh, P.V. 2017. Comparative assessment of physico-chemical characteristics and fibril formation capacity of thermostable carp scales collagen. Materials Science and Engineering C 70: 32-40.

Pati, F., Adhikari, B. & Dhara, S. 2010. Isolation and characterization of fish scale collagen of higher thermal stability. Bioresource Technology 101(10): 3737-3742.

Poppe, J. 1992. Gelatin. In Thickening and Gelling Agent for Food, edited by Imeson, A. Switzerland: Springer. pp. 98-123.

Prakash, D., Suri, S., Upadhyay, G. & Singh, B.N. 2007. Total phenol, antioxidant and free radical scavenging activities of some medicinal plants. International Journal of Food Sciences and Nutrition 58(1): 18-28.

Silvestre, M.P.C., Morais, H.A., Silva, V.D.M. & Silva, M.R. 2013. Degree of hydrolysis and peptide profile of whey proteins using pancreatin. Nutrire 38(3): 278-290.

Ulagesan, S., Kuppusamy, A. & Kim, H.J. 2018. Antimicrobial and antioxidant activities of protein hydrolysate from terrestrial snail Cryptozona bistrialis. Journal of Applied Pharmaceutical Science 8(12): 12-19.

Wang, B., Wang, Y.M., Chi, C.F., Luo, H.Y., Deng, S.G. & Ma, J.Y. 2013. Isolation and characterization of collagen and antioxidant collagen peptides from scales of croceine croaker (Pseudosciaena crocea). Marine Drugs 11(11): 4641-4661.

Yu, Z., Yin, Y., Zhao, W., Yu, Y., Liu, B., Liu, J. & Chen, F. 2011. Novel peptides derived from egg white protein inhibiting alpha-glucosidase. Food Chemistry 129(4): 1376-1382.

Zayas, J.F. 1997. Solubility of proteins. In Functionality of Proteins in Food, edited by Zayas, J.F. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 6-75.

Zhang, J., Duan, R., Ye, C. & Konno, K. 2010. Isolation and characterization of collagens from scale of silver carp (Hypophthalmichthys molitrix). Journal of Food Biochemistry 34(6): 1343-1354.

Zhao, Y., Wang, Z., Zhang, J. & Su, T. 2018. Extraction and characterization of collagen hydrolysates from the skin of Rana chensinensis. AGRIS 8(3): 1-8.

Zhou, P. & Regenstein, J.M. 2005. Effects of alkaline and acid pretreatments on Alaska pollock skin gelatin extraction. Journal of Food Science 70(6): c392-c396.

Zhuang, Y., Sun, L., Zhang, Y. & Liu, G. 2012. Antihypertensive effect of long-term oral administration of jellyfish (Rhopilema esculentum) collagen peptides on renovascular hypertension. Marine Drugs 10(2): 417-426.

 

*Pengarang untuk surat-menyurat; email: syamsunur19@gmail.com

 

       

 

sebelumnya