Sains Malaysiana 50(8)(2021): 2329-2341
http://doi.org/10.17576/jsm-2021-5008-16
Characterization, Antioxidant and α-Glucosidase
Inhibitory Activity of Collagen Hydrolysate from Lamuru (Caranx ignobilis) Fishbone
(Pencirian, Antioksidan dan Aktiviti Perencatan α-Glukosid Kolagen daripada Tulang Ikan Lamuru (Caranx ignobilis))
SYAMSU
NUR1*, YOGILLVERD WIERSON1, YULIA3,
FITRIYANTI JUMAETRI SAMI1, MEGAWATI1, ANDI NUR AISYAH2,
MARWATI3 & SAHIBUDDIN A. GANI1
1Department
of Pharmaceutical Chemistry, Sekolah Tinggi Ilmu Farmasi Makassar, 90242 Daya Makassar, Indonesia
2Department
of Pharmaceutical Technology, Sekolah Tinggi Ilmu Farmasi Makassar, 90242 Daya Makassar, Indonesia
3Department
of Pharmaceutical Biology, Sekolah Tinggi Ilmu Farmasi Makassar, 90242 Daya Makassar, Indonesia
Diserahkan: 10 Februari 2020/Diterima: 18 Disember 2020
ABSTRACT
The Lamuru fish (Caranx ignobilis) is mostly found in tropical waters of the indo-pacific region, namely
Indonesia. It is believed to contain collagen and this study aims to isolate
collagen from its bone and determine the collagen’s antioxidant and
α-glucosidase inhibitory activity. In our study, the collagen was
extracted using acetic acid which was hydrolyzed by collagenase enzyme from Clostridium histolyticum at a temperature of 37 °C, and pH 7.0.
During hydrolysis, the degree of hydrolysis (DH) was calculated and collagen
hydrolysates were characterized by
SDS
-PAGE,
UV-Visible spectroscopy and FT-IR spectroscopy. After characterization, the
collagen hydrolisate of lamuru (
CHL) fish
was analyzed for its
antioxidant properties and α-glucosidase inhibitory activity. The result
shows that a higher percentage degree
of hydrolysis was obtained, 31.17%, at 120 min of hydrolysis. The
CHL
characterization by
SDS
-PAGE
showed its molecular weight ranging from 35,000-180,000 Daltons and identified
the collagen as type I. The UV-Vis analysis of
CHL
provided a maximum absorbance at a wavelength of 233 nm. At the same time, the
FT-IR analysis showed the presence of amides I, II, and III, which confirms the
formation of the collagen triple helix. For its bioactivity assay, the
CHL
shows that
CHL
provided DPPH radical reduction activity reaching 51.45±1.24% (IC50 at 485.9 µg/mL). The ferric reduction antioxidant power of
CHL
(FRAP value) showed a significant reduction of
Fe3+ to Fe2+ with a value of 711.27 µM/g. The CHL inhibition activity of α-glucosidase
enzyme IC50 was determined to be 574 µg/mL. Based on the antioxidant bioactivity and α-glucosidase inhibition, the
collagen peptide enables its use as a therapeutic development for a variety of
disorders caused by oxidative stress, such as diabetes mellitus.
Keywords:
α-glucosidase inhibitory; antioxidant; Caranx ignobilis; characterization;
collagen hydrolysate (CHL)
ABSTRAK
Ikan Lamuru (Caranx ignobilis) adalah sejenis ikan yang hidup di perairan Indo-Pasifik khasnya Indonesia. Ia dipercayai mengandungi bahan kolagen dan kajian ini bertujuan untuk mengasingkan bahan kolagen daripada tulang ikan Lamuru serta menentukan aktiviti antioksidan dan perencatan oleh α-glukosid. Dalam kajian ini, kolagen daripada tulang ikan lamuru diekstrak menggunakan asid asetik dan kemudian dihidrolisis menggunakan enzim kolagenase daripada Clostridium histolyticum pada 37 °C, pH 7.0. Semasa hidrolisis, tahap hidrolisis (DH) telah dapat ditentukan. Kolagen tulang ikan Lamuru (
CHL
) dicirikan oleh
SDS
-PAGE, spektroskopi UV boleh nampak dan spektroskopi FT-IR. Setelah pencirian,
CHL
dianalisis aktiviti menghambat antioksidan dan α-glukosid. Keputusan menunjukkan bahawa tahap peratusan hidrolisis lebih tinggi berlaku pada 120 min dengan peratusan kadar hidrolisis sebanyak 31.71%. Pencirian
CHL
oleh
SDS
-PAGE memperoleh berat molekul purata antara 35,000-180,000 Dalton dan menunjukkan ia adalah merupakan jenis kolagen I. Analisis UV boleh nampak
CHL
menyediakan penyerapan maksimum pada panjang gelombang 233 nm. Pada
masa yang sama, analisis FT-IR mengesan kehadiran amides I, II dan III yang menunjukkan formasi gandaan tiga heliks kolagen. Untuk ujian bioaktiviti,
CHL
menunjukkan bahawa
CHL
memberi aktiviti pengurangan radikal DPPH mencapai 51.45±1.24%
(IC50 pada 485.9 μg/mL) dan kuasa antioksidan penurunan besi
CHL
(nilai FRAP), Fe3+ hingga Fe2+ bernilai 711.27 μM/g.
CHL
daripada tulang ikan mampu memerencat aktiviti enzim α-glukosid dengan nilai IC50 574 μg/mL. Berdasarkan pengujian bioaktiviti antioksidan dan penghambatan alfa glukosid sehingga kolagen peptida membolehkannya digunakan sebagai pengembangan terapi berkaitan dengan pelbagai sebab yang disebabkan oleh tekanan oksidatif seperti diabetes
mellitus.
Kata kunci: Antioksidan; Caranx ignobilis; kolagen hidrolisat (CHL); pencirian; perencatan α-glukosid
RUJUKAN
Abuine, R., Rathnayake, A.U. &
Byun, H.G. 2019. Biological activity of peptides purified from fish skin
hydrolysates. Fisheries and Aquatic Sciences 22(2): 1-14.
Apak, R., Guclu, K., Demirata, B.,
Ozyurek, M., Celik, S.E., Bektasoglu, B., Berker, K.I. & Ozyurt, D. 2007.
Comparative evaluation of various total antioxidant capacity assays applied to
phenolic compounds with the CUPRAC assay. Molecules 12(7): 1496-1547.
Bousopha, S., Nalinanon, S. &
Sriket, C. 2016. Production of collagen hydrolysate with antioxidant activity
from pharaoh cuttlefish skin. Chiang Mai University Journal of Natural
Sciences 16(15(2)): 151-162.
Byun, H.G. & Kim, S.K. 2001.
Purification and characterization of angiotensin I converting enzyme (ACE)
inhibitory peptides from Alaska pollack (Theragra chalcogramma) skin. Process
Biochemistry 36(12): 1152-1162.
Carvalho, A.M., Marques, A.P., Silva,
T.H. & Reis, R.L. 2018. Evaluation of the potential of collagen from
codfish skin as a biomaterial for biomedical applications. Marine Drugs 16(12): 495.
Chi, C.F., Hu, F.Y., Wang, B., Li,
Z.R. & Luo, H.Y. 2015. Influence of amino acid compositions and peptide
profiles on antioxidant capacities of two protein hydrolysates from skipjack
tuna (Katsuwonus pelamis) dark
muscle. Marine Drugs 13(5): 2580-2601.
Cihan, A.C., Ozcan, B., Bubenheim,
N.T. & Cokmus, C. 2010. Characterization of a thermostable
α-glucosidase from Geobacillus
thermodenitrificans F84a. In Current Research, Technology and
Education Topics in Applied Microbiology and Microbial Biotechnology.
Spain: Research Center, Badajoz. pp. 945-955.
deMan, J.M. 1999. Protein. Principles
of Food Chemistry. New York: Springer. pp. 111-162.
Ding, D., Du, B., Zhang, C., Zaman,
F. & Huang, Y. 2019. Isolation and identification of an antioxidant
collagen peptide from skipjack tuna (Katsuwonus
pelamis) bone. RSC Advances 9: 27032-27041.
Elya, B., Basah, K., Mun’im, A.,
Yuliastuti, W., Bangun, A. & Septiana, E.K. 2012. Screening of
α-glucosidase inhibitory activity from some plants of Apocynaceae,
Clusiaceae, Euphorbiaceae, and Rubiaceae. Journal of Biomedicine and
Biotechnology 2012: 281078.
Gómez-Guillén, M.C., Turnay, J.,
Fernandez-Diaz, M.D., Ulmo, N., Lizarbe, M.A. & Montero, P. 2002.
Structural and physical properties of gelatin extracted from different marine
species: A comparative study. Food Hydrocolloids 16(1): 25-34.
Haniffa, M.A.K., Sheela, P.A.Y.,
Kavitha, K. & Jais, A.M.M. 2014. Salutary value of haruan, the striped
snakehead Channa striatus - a review. Asian Pacific Journal of
Tropical Biomedicine 4(Supplement 1): S8-S15.
Haque, E. & Chand, R. 2008.
Antihypertensive and antimicrobial bioactive peptides from milk proteins. European
Food Research and Technology 227(1): 7-15.
Hong, G.P., Min, S.G. & Jo, Y.J.
2019. Anti-oxidative and anti-aging activities of porcine by-product collagen
hydrolysates produced by commercial proteases: Effect of hydrolysis and
ultrafiltration. Molecules 24(6): 1104.
Hoyer, B., Bernhardt, A., Lode, A.,
Heinemann, S., Sewing, J., Klinger, M., Notbohm, H. & Gelinsky, M. 2014.
Jellyfish collagen scaffolds for cartilage tissue engineering. Acta
Biomaterialia 10(2): 883-892.
Iba, Y., Yokoi, K., Eitoku, I., Goto,
M., Koizumi, S., Sugihara, F., Oyama, H. & Yoshimoto, T. 2016. Oral
administration of collagen hydrolysates improves glucose tolerance in normal
mice through GLP-1-dependent and GLP-1-independent mechanisms. Journal of
Medicinal Food 19(9): 836-843.
Jamilah, B., Razali, U.H.M., Hashim,
D. & Sazili, A.Q. 2013. Properties of collagen from barramundi (Lates calcarifer) skin. International
Food Research Journal 20(2): 791-798.
Kim, S.K. & Mendis, E. 2006.
Bioactive compounds from marine processing byproducts - a review. Food
Research International 39(4): 383-393.
Kong, J. & Yu, S. 2007. Fourier
transform infrared spectroscopic analysis of protein secondary structures. Acta
Biochimica et Biophysica Sinica 39(8): 549-559.
Konrad, B., Anna, D., Marek, S.,
Marta, P., Aleksandra, Z. & Jozefa, C. 2014. The evaluation of dipeptidyl
peptidase (DPP)-IV, α-glucosidase and angiotensin converting enzyme (ACE)
inhibitory activities of whey proteins hydrolyzed with serine protease isolated
from Asian pumpkin (Cucurbita ficifolia). International Journal of Peptide Research and Therapeutics 20(4):
483-491.
León-López, A., Fuentes-Jimenez, L.,
Hernandez-Fuentes, A.D., Campos-Montiel, R.G. & Aguirre-Alvarez, G. 2019.
Hydrolysed collagen from sheepskins as a source of functional peptides with
antioxidant activity. International Journal of Molecular Sciences 20(16): 3931.
Liang, Q., Wang, L., Sun, W., Wang,
Z., Xu, J. & Ma, H. 2014. Isolation and characterization of collagen from
the cartilage of Amur sturgeon (Acipenser
schrenckii). Process Biochemistry 49(2): 318-323.
Liu, F., Liu, C.E., Lorena, D.,
Xiaoshuan, Z. & Fu, Z. 2012. Evaluation of the antioxidant activity of
collagen peptide additive extracted from cod skin. Journal of Environmental
Protection and Ecology 13(3): 1836-1841.
Liu, H., Li, D. & Guo, S. 2007.
Studies on collagen from the skin of channel catfish (Ictalurus punctaus). Food Chemistry 101(2): 621-625.
Lorenzo, J.M., Munekata, P.E.S.,
Gomez, B., Barba, F.J., Leticia, M., Perez-Santaescolastica, C. & Fidel,
T.V. 2018. Bioactive peptides as natural antioxidants in food products - a
review. Trends in Food Science & Technology 79: 136-147.
Lowry, O.H., Rosebrough, N.J., Farr,
A.L. & Randall, R.J. 1951. Protein measurement with the Folin phenol
reagent. The Journal of Biological Chemistry 193: 265-275.
Mahboob, S. 2014. Isolation and
characterization of collagen from fish waste material - skin, scales and fins
of Catla catla and Cirrhinus mrigala. Journal of Food
Science and Technology 52(7): 4296-4305.
Matmaroh, K., Benjakul, S., Prodpran,
T., Encarnacion, A.B. & Kishimura, H. 2011. Characteristics of acid soluble
collagen and pepsin soluble collagen from scale of spotted golden goatfish (Parupeneus heptacanthus). Food
Chemistry 129(3): 1179-1186.
McPherson, R.A. 2011. Specific
proteins. In Henry’s Clinical Diagnosis
and Management by Laboratory Methods, edited by McPherson, R.A. &
Pincus, M.R. Elsevier Health Sciences.
Mocan, E., Tagadiuc, O. & Nacu,
V. 2011. Aspects of collagen isolation procedure. Clinical Research Studies 320: 1-5.
Muyonga, J.H., Cole, C.G.B. &
Duodu, K.G. 2004. Characterisation of acid soluble collagen from skins of young
and adult Nile perch (Lates niloticus). Food Chemistry 85(1): 81-89.
Nasri, R., Younes, I., Jridi, M.,
Trigui, M., Bougatef, A., Nedjar-Arroume, N., Dhulster, P., Nasri, M. &
Chaabouni, M.K. 2013. ACE inhibitory and antioxidative activities of Goby (Zosterissessor ophiocephalus) fish
protein hydrolysates: Effect on meat lipid oxidation. Food Research
International 54(1): 552-561.
Nur, S., Jannah, C., Winarni, D.,
Rahman, D.A., Hamdayani, L.A. & Sami, F.J. 2019. Total phenolic and
flavonoid compounds, antioxidant and toxicity profile of extract and fractions
of paku atai tuber (Angiopteris ferox Copel). Food Research 3(6):
734-740.
Ogawa, M., Moody, M.W., Portier,
R.J., Bell, J., Schexnayder, M.A. & Losso, J.N. 2003. Biochemical
properties of black drum and sheepshead seabream skin collagen. Journal of
Agricultural and Food Chemistry 51(27): 8088-8092.
Pal, G.K. & Suresh, P.V. 2017.
Comparative assessment of physico-chemical characteristics and fibril formation
capacity of thermostable carp scales collagen. Materials Science and
Engineering C 70: 32-40.
Pati, F., Adhikari, B. & Dhara,
S. 2010. Isolation and characterization of fish scale collagen of higher thermal
stability. Bioresource Technology 101(10): 3737-3742.
Poppe, J. 1992. Gelatin. In Thickening
and Gelling Agent for Food, edited by Imeson, A. Switzerland: Springer. pp.
98-123.
Prakash, D., Suri, S., Upadhyay, G.
& Singh, B.N. 2007. Total phenol, antioxidant and free radical scavenging
activities of some medicinal plants. International Journal of Food Sciences
and Nutrition 58(1): 18-28.
Silvestre, M.P.C., Morais, H.A.,
Silva, V.D.M. & Silva, M.R. 2013. Degree of hydrolysis and peptide profile
of whey proteins using pancreatin. Nutrire 38(3): 278-290.
Ulagesan, S., Kuppusamy, A. &
Kim, H.J. 2018. Antimicrobial and antioxidant activities of protein hydrolysate
from terrestrial snail Cryptozona
bistrialis. Journal of Applied Pharmaceutical Science 8(12): 12-19.
Wang, B., Wang, Y.M., Chi, C.F., Luo,
H.Y., Deng, S.G. & Ma, J.Y. 2013. Isolation and characterization of
collagen and antioxidant collagen peptides from scales of croceine croaker (Pseudosciaena crocea). Marine Drugs 11(11): 4641-4661.
Yu, Z., Yin, Y., Zhao, W., Yu, Y.,
Liu, B., Liu, J. & Chen, F. 2011. Novel peptides derived from egg white
protein inhibiting alpha-glucosidase. Food Chemistry 129(4): 1376-1382.
Zayas, J.F. 1997. Solubility of
proteins. In Functionality of Proteins in
Food, edited by Zayas, J.F. Berlin, Heidelberg: Springer Berlin Heidelberg.
pp. 6-75.
Zhang, J., Duan, R., Ye, C. &
Konno, K. 2010. Isolation and characterization of collagens from scale of
silver carp (Hypophthalmichthys molitrix). Journal of Food Biochemistry 34(6): 1343-1354.
Zhao, Y., Wang, Z., Zhang, J. &
Su, T. 2018. Extraction and characterization of collagen hydrolysates from the
skin of Rana chensinensis. AGRIS 8(3): 1-8.
Zhou, P. & Regenstein, J.M. 2005.
Effects of alkaline and acid pretreatments on Alaska pollock skin gelatin
extraction. Journal of Food Science 70(6): c392-c396.
Zhuang, Y., Sun, L., Zhang, Y. & Liu, G. 2012.
Antihypertensive effect of long-term oral administration of jellyfish (Rhopilema esculentum) collagen peptides
on renovascular hypertension. Marine Drugs 10(2): 417-426.
*Pengarang untuk surat-menyurat; email: syamsunur19@gmail.com
|