Sains Malaysiana 51(11)(2022): 3607-3619

http://doi.org/10.17576/jsm-2022-5111-08

 

Cadmium Toxicity Alleviation through Exogenous Application of Gibberellic Acid (GA3) in Mustard (Brassica juncea (L.) Czern.) and Rapeseed (Brassica rapa L.)

(Pengurangan Ketoksikan Kadmium melalui Penggunaan Eksogen Asid Giberelik (GA3) dalam Mustard (Brassica juncea (L.) Czern.) dan Biji Ragam (Brassica rapa L.))

 

MUHAMMAD SAJJAD IQBAL1,*, FAIZA BASHIR1, MUHAMMAD AKBAR1, KHAWAJA SHAFIQUE AHMAD2, MUHAMMAD AZHAR ALI1, SYED ATIQ HUSSAIN1, NOSHIA ARSHAD1, HAJRA MASOOD1, SABA MUNIR1, TAHIRA AHMAD1 & MUHAMMAD ISLAM3

 

1Biodiversity Informatics, Genomics and Post Harvest Biology Laboratory, Department of Botany, University of Gujrat, Gujrat, 50700, Pakistan

2Department of Botany, University of Poonch Rawalakot, 12350, Azad Jammu & Kashmir, Pakistan

3Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan

 

Diserahkan: 21 Oktober 2021/Diterima: 22 Jun 2022

 

ABSTRACT

An experiment was carried out by considering adverse impact of heavy metals on human health through consumption of crops. To alleviate the adverse effects of cadmium (Cd) toxicity through foliar application of gibberellic acid (GA3), two varieties of Brassica including Indian mustard (Brassica juncea (L.) Czern.) commonly known as ‘Raya’ and rapeseed (Brassica rapaL.) as ‘Toria’ were studied. The Completely Randomized Design (CRD) was used with eight treatments including control in four replicates. Treatments were as following, T0 (control), T1 (150 μM CdCl2), T2 (50 mg/L GA3), T3 (75 mg/L GA3), T4 (100 mg/L GA3), T5 (150 μM CdCl2 + 50 mg/L GA3), T6 (150 μM CdCl2 + 75 mg/L GA3), and T7 (150 μM CdCl2 + 100 mg/L GA3). Gibberellic acid (GA3), a plant growth regulator applied exogenously. The concentration of cadmium (150 µM CdCl2) resulted in Cd toxicity affected adversely the morphological and biochemical parameters. Foliar application of GA3 (50 mg, 75 mg and 100 mg) positively influenced the various growth parameters as root length (30 cm), shoot length (129.75 cm), number of leaves (14.5), pods per plant (88) and biochemical parameters like total chlorophyll (0.19 mg/g), protein content (0.70 mg/mL), carbohydrates (0.37 mg/mL) and CAT (0.56 units/mg). Outcome indicated that GA3 reduces the harmful effects of Cd stress in both varieties. It was concluded that all growth and yield parameters of variety ‘Raya’ were better as compared to variety ‘Toria’, hence Raya recommended for large scale cultivation with GA3 under Cd stress.

 

Keywords: Cadmium stress; gibberellic acid; mustard; toxicity

 Abstrak

Satu uji kaji telah dijalankan dengan mempertimbangkan kesan buruk logam berat terhadap kesihatan manusia melalui penggunaan tanaman. Untuk mengurangkan kesan buruk ketoksikan kadmium (Cd) melalui penggunaan daun asid giberelik (GA3), dua jenis Brassica termasuk mustard India (Brassica juncea (L.) Czern.) yang biasanya dikenali sebagai 'Raya' dan biji sesawi (Brassica rapa L.) 'Toria' dikaji. Reka Bentuk Rawak Sepenuhnya (CRD) digunakan dengan lapan rawatan termasuk kawalan dalam empat replikasi. Rawatan adalah seperti berikut, T0 (kawalan), T1 (150 μM CdCl2), T2 (50 mg/L GA3), T3 (75 mg/L GA3), T4 (100 mg/L GA3), T5 (150 μM CdCl2 + 50 mg/L GA3), T6 (150 μM CdCl2 + 75 mg/L GA3) dan T7 (150 μM CdCl2 + 100 mg/L GA3). Asid giberelik (GA3), pengawal selia pertumbuhan tumbuhan digunakan secara eksogen. Kepekatan kadmium (150 µM CdCl2) mengakibatkan ketoksikan Cd memberi kesan buruk kepada parameter morfologi dan biokimia. Penggunaan daun GA3 (50 mg, 75 mg dan 100 mg) secara positif mempengaruhi pelbagai parameter pertumbuhan seperti panjang akar (30 cm), panjang pucuk (129.75 cm), bilangan daun (14.5), buah setiap tumbuhan (88) dan biokimia parameter seperti jumlah klorofil (0.19 mg/g), kandungan protein (0.70 mg/mL), karbohidrat (0.37 mg/mL) dan CAT (0.56 unit/mg). Keputusan menunjukkan bahawa GA3 mengurangkan kesan berbahaya tekanan Cd dalam kedua-dua varieti. Disimpulkan bahawa semua parameter pertumbuhan dan hasil varieti 'Raya' adalah lebih baik berbanding varieti 'Toria', justeru Raya disyorkan untuk penanaman berskala besar dengan GA3 di bawah tekanan Cd.

 

Kata kunci: Asid giberelik; ketoksikan; mustard; tekanan kadmium

 

RUJUKAN

Aghbolaghi, M.A., Sedghi, M., Sharifi, R.S. & Dedicova, B. 2022. Germination and the biochemical response of pumpkin seeds to different concentrations of humic acid under cadmium stress. Agriculture 12(3): 374. 

Ahmad, P., Sarwat, M., Bhat, N.A., Wani, M.R., Kazi, A.G. & Tran, L.S. 2015. Alleviation of cadmium toxicity in Brassica juncea L. (Czern. & Coss.) by calcium application involves various physiological and biochemical strategies. PLoS ONE 10(1): e0114571.

Al-Mahmud, J., Hasanuzzaman, M., Nahar, K., Rahman, A. & Fujita, M. 2019. EDTA reduces cadmium toxicity in mustard (Brassica juncea L.) by enhancing metal chelation, antioxidant defense and glyoxalase systems. Acta Agrobotanica 72(2): 1-17.

Alyemeni, M.N., Ahanger, M.A., Wijaya, L., Alam, P., Bhardwaj, R. & Ahmad, P. 2018. Selenium mitigates cadmium-induced oxidative stress in tomato (Solanum lycopersicum L.) plants by modulating chlorophyll fluorescence, osmolyte accumulation, and antioxidant system. Protoplasma 255(2): 459-469.

Aprile, A., Sabella, E., Vergine, M., Genga, A., Siciliano, M., Nutricati, E., Rampino, P., De Pascali, M., Luvisi, A., Miceli, A., Negro, C. & De Bellis, L. 2018. Activation of a gene network in durum wheat roots exposed to cadmium. BMC Plant Biology 18: 238. 

Asgher, M., Khan, M.I.R., Anjum, N.A. & Khan, N.A. 2015. Minimising toxicity of cadmium in plants-role of plant growth regulators. Protoplasma 252(2): 399-413.

Aziz, R., Rafiq, M.T., He, Z., Liu, D., Sun, K. & Xiaoe, Y. 2015. In vitro assessment of cadmium bioavailability in Chinese cabbage grown on different soils and its toxic effects on human health. BioMed Research International 2015: 285351.

Benhamdi, A., Kandouli, C., Cherfia, R., Chelouche, S., Boumissa, Z., Benniou, M.E., Hafdi, R. & Mechakra, A. 2021. Effect of zinc on the growth and the antioxidant system of Lens culinaris cultivated on agar medium. Journal of Ecological Engineering 22(9): 13-20.

Guo, B., Liu, C., Liang, Y., Li, N. & Fu, Q. 2019. Salicylic acid signals plant defense against cadmium toxicity. International Journal of Molecular Sciences 20(12): 2960.

Haider, F.U., Liqun, C., Coulter, J.A., Cheema, S.A., Wu, J., Zhang, R., Wenjun, M. & Farooq, M. 2021. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety 211: 111887.

Hasan, S., Sehar, Z. & Khan, N.A. 2020. Gibberellic acid and sulfur-mediated reversal of cadmium-inhibited photosynthetic performance in Mungbean (Vigna radiata L.) involves nitric oxide. Journal of Plant Growth Regulation 39: 1605-1615.

Hou, L.L., Tong, T., Tian, B. & Xue, D.W. 2019. Chapter 1- Crop yield and quality under Cadmium stress. In Cadmium Tolerance in Plants: Agronomic, Molecular, Signaling, and Omic Approches, edited by Hasanuzzaman, M., Prasad, M.N.V., Nahar, K. Cambridge: Academic Press. pp. 1-18.

Hu, S., Shinwari, K.I., Song, Y., Xia, J., Xu, H., Du, B., Luo, L. & Zheng, L. 2021. OsNAC300 positively regulates cadmium stress responses and tolerance in rice roots. Agronomy 11(1): 95.

Iqbal, M.S. & Akbar, M. 2021. Phenotypic diversity analysis and performance of elite lines of Brassica napus L. Bangladesh Journal of Botany 50(1): 1-6.

Irakoze, W., Prodjinoto, H., Nijimbere, S., Rufyikiri, G. & Lutts, S. 2020. NaCl and Na2SO4 salinities have different impact on photosynthesis and yield-related parameters in Rice (Oryza sativa L.). Agronomy 10(6): 864.

Irfan, M., Ahmad, A. & Hayat, S. 2014. Effect of cadmium on the growth and antioxidant enzymes in two varieties of Brassica juncea. Saudi Journal of Biological Sciences 21(2): 125-131.

Kapoor, D., Kaur, S. & Bhardwaj, R. 2014. Physiological and biochemical changes in Brassica juncea plants under Cd-induced stress. BioMed Research International 2014: 726070.

Kapoor, D., Singh, M.P., Kaur, S., Bhardwaj, R., Zheng, B. & Sharma, A. 2019. Modulation of the functional components of growth, photosynthesis, and antioxidant stress markers in Cadmium exposed Brassica junceaL. Plants 8(8): 260.

Khan, N.A., Asgher, M., Per, T.S., Masood, A., Fatma, M. & Khan, M.I.R. 2016. Ethylene potentiates sulfur-mediated reversal of cadmium inhibited photosynthetic responses in mustard. Frontiers in Plant Science 7: 1628.

Kluska, K., Adamczyk, J. & Krężel, A. 2018. Metal binding properties, stability and reactivity of zinc fingers. Coordination Chemistry Reviews 367: 18-64.

Kumar, A., Lal, M., Mohan, N., Kumar, M. & Kumar, N. 2018. Effect of different sowing dates on yield and yield attributes of Indian mustard (Brassica junceaL.) genotypes. International Journal of Pure and Applied Biosciences 6(2): 848.

Lalarukh, I. & Shahbaz, M. 2020. Response of antioxidants and lipid peroxidation to exogenous application of alpha-tocopherol in sunflower (Helianthus annuus L.) under salt stress. Pakistan Journal of Botany 52(1): 75-83.

Liu, Y., Xiao, T., Baveye, P.C., Zhu, J., Ning, Z. & Li, H. 2015. Potential health risk in areas with high naturally occurring cadmium background in southwestern China. Ecotoxicology and Environmental Safety 112: 122-131.

Masood, A., Khan, M.I.R., Fatma, M., Asgher, M., Per, T.S. & Khan, N.A. 2016. Involvement of ethylene in gibberellic acid-induced sulfur assimilation, photosynthetic responses and alleviation of cadmium stress in mustard. Plant Physiology and Biochemistry 104: 1-10.

Masood, A. & Khan, N.A. 2013. Ethylene and gibberellic acid interplay in regulation of photosynthetic capacity inhibition by cadmium. Journal of Plant Biochemistry and Physiology 1(111): 1-3.

Nagarajan, S., Varatharajan, N. & Gandhimeyyan, R.V. 2021. Understanding the responses, mechanism and development of salinity stress tolerant cultivars in rice. In Integrative Advances in Rice Research, edited by Min Huang. London: Intech Open. 10.5772/intechopen.99233.

Nouairi, I., Jalali, K., Zribi, F., Barhoumi, F., Zribi, K. & Mhadhbi, H. 2019. Seed priming with calcium chloride improves the photosynthesis performance of faba bean plants subjected to cadmium stress. Photosynthetica 57(2): 438-445.

Perveen, S.Iqbal, M., Saeed, M.Iqbal, N., Zafar, S. & Mumtaz, T. 2019. Cysteine-induced alterations in physicochemical parameters of oat (Avena sativa L. var. Scott and F-411) under drought stress. Biologia Futura 70: 16-24.

Qayyum, M.F., Zia ur Rehman, M., Ali, S., Rizwan, M., Naeem, A., Maqsood, M.A. & Ok, Y.S. 2017. Residual effects of monoammonium phosphate, gypsum and elemental sulfur on cadmium phytoavailability and translocation from soil to wheat in an effluent irrigated field. Chemosphere 174: 515-523.

Qi, F., Zha, Z., Du, L., Feng, X., Wang, D., Zhang, D., Fang, Z.D., Ma, L.J., Jin, Y.D. & Xia, C. 2014. Impact of mixed low molecular weight organic acids on uranium accumulation and distribution in a variant of mustard (Brassica juncea var. tumida). Journal of Radioanalytical and Nuclear Chemistry 302: 149-159.

Shahzad, K., Hussain, S., Arfan, M., Hussain, S., Waraich, E.A., Zamir, S., Saddique, M., Rauf, A., Kamal, K.Y., Hano, C. & El-Esawi, M.A. 2021. Exogenously applied gibberellic acid enhances growth and salinity stress tolerance of maize through modulating the morpho-physiological, biochemical and molecular attributes. Biomolecules 11(7): 1005.

Shankar, S., Segaran, G., Sundar, R.D.V., Settu, S. & Sathiavelu, M. 2019. Brassicaceae-a classical review on its pharmacological activities. International Journal of Pharmaceutical Sciences Review and Research 55(1): 107-113.

Sharma, N., Nehal, N., Singh, M., Singh, P., Rajpoot, P., Pandey, A.K. & Yadav, R.K. 2017. Effect of plant growth regulators on growth, biochemical changes and yield of Mustard [Brassica juncea (L.) Czern. & Coss.]. Plant Archives 17(1): 33-38.

Sharma, P., Chouhan, R.Bakshi, P.Gandhi, S.G.Kaur, R.Sharma, A. & Bhardwaj, R. 2022. Amelioration of chromium-induced oxidative stress by combined treatment of selected plant-growth-promoting rhizobacteria and earthworms via modulating the expression of genes related to reactive oxygen species metabolism in Brassica juncea. Frontiers of Microbiology 802512.

Sharma, P., Jha, A.B., Dubey, R.S. & Pessarakli, M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 2012: 217037.

Soengas, P., Sotelo, T., Velasco, P. & Elena, M. 2011. Antioxidant properties of Brassica vegetables. Functional Plant Science and Biotechnology 5(2): 43-55.

Stefano, G., Bose, J., Hill, C. & Wu, H. 2000. New insights into salinity sensing, signaling and adaptation in plants. Frontiers in Plant Science 11(265): 278.

Teas, H.J. 2012. Physiology and Management of Mangroves. The Hague: Dr W. Junk Publishers.

Vetrano, F., Moncada, A. & Miceli, A. 2020. Use of gibberellic acid to increase the salt tolerance of leaf lettuce and rocket grown in a floating system. Agronomy 10(4): 505. 

Wang, B., Yang, W. & Shan, C. 2022. Effects of selenomethionine on the antioxidative enzymes, water physiology and fruit quality of strawberry plants under drought stress. Horticultural Science (Prague) 49(1): 10-18.

Zhang, D., Du, Y., He, D., Zhou, D., Wu, J., Peng, J., Liu, L., Liu, Z. & Yan, M. 2021. Use of comparative transcriptomics combined with physiological analyses to identify key factors underlying cadmium accumulation in Brassica juncea L. Frontiers of Genetics 12: 655885.

Zulfiqar, U., Jiang, W., Xiukang, W., Hussain, S., Ahmad, M., Maqsood, M.F., Ali N., Ishfaq, M., Kaleem, M., Haider, F.U., Farooq, N., Naveed, M., Kucerik, J., Brtnicky, M. & Mustafa, A. 2022. Cadmium phytotoxicity, tolerance, and advanced remediation approaches in agricultural soils: A comprehensive review. Frontiers of Plant Sciences 2022: 773815.

 

*Pengarang untuk surat-menyurat; email: drsajjad.iqbal@uog.edu.pk

 

 

 

 

   

sebelumnya