Sains Malaysiana 51(11)(2022): 3741-3754
http://doi.org/10.17576/jsm-2022-5111-18
Changes of Grip Strength,
Articular Cartilage and Subchondral Bone in Monoiodoacetate-Induced
Osteoarthritis in Rats
(Perubahan pada Kekuatan Genggaman, Rawan Artikul dan Tulang Subkondral dalam Osteoartritis Aruhan Monoiodoasetat pada Tikus)
SOPHIA OGECHI EKEUKU1, FAIRUS AHMAD2 & KOK-YONG CHIN1,*
1Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia
2Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia
Diserahkan: 24 Ogos 2021/Diterima: 27 Jun 2022
Abstract
Osteoarthritis is
a degenerative disease affecting articular cartilage among
the elderly. The intra-articular monoiodoacetate injection is one of the most widely used methods to induce osteoarthritis in
animals. While the effects of monoiodoacetate on
cartilage are well-characterized, its effects on subchondral bone remodeling
are less studied. The purpose of this study was to determine the changes of the
grip strength, articular cartilage structure and subchondral bone remodeling in monoiodoacetate-induced osteoarthritis in rats. Three-month-old male Wistar rats were assigned to normal control (n=6) and osteoarthritis group (n=6), which received intra-articular
injection of 4 mg/50 µL monoiodoacetate solution once
at the left knee of hindlimb. The rats were monitored
for four weeks. The grip strength test was performed before injection and every
week after injection. After four weeks, the femurs with intact cartilage were
harvested for histomorphological analysis. Grip strength was reduced
significantly in the osteoarthritic rats
compared to the normal rats (p<0.05). Food intake was reduced significantly
one week following monoiodoacetate-induction (p<0.05), but it stabilized afterwards. Monoiodoacetate injection increased cartilage erosion and osteoclast number in the
subchondral bone of the osteoarthritic rats compared to the normal rats
(p<0.05). However, it did not affect body weight, subchondral
bone osteoblast activity, mineralization and microstructure of osteoarthritic
rats (p>0.05). As a conclusion, monoiodoacetate-induced osteoarthritis affects
the cartilage and increases osteoclast formation in the subchondral bone of
rats.
Keywords:
Femur; monoiodoacetate; osteoarthritis; subchondral
bone
Abstrak
Osteoartritis ialah penyakit degeneratif yang merosakkan rawan artikul dalam kalangan warga tua. Suntikan intra-artikul monoiodoasetat merupakan salah satu kaedah yang paling biasa digunakan untuk mengaruh osteoartritis pada haiwan. Walaupun kesan monoiodoasetat ke atas rawan telah diperincikan, kesannya terhadap penukargantian tulang subkondral kurang dikaji. Tujuan kajian ini adalah untuk menentukan perubahan kekuatan genggaman, struktur rawan artikul dan penukargantian tulang subkondral dalam osteoartritis aruhan monoiodoasetat pada tikus. Tikus Wistar berumur tiga bulan telah dibahagi kepada kumpulan kawalan normal (n=6) dan osteoartritis (n=6) yang menerima suntikan intra-artikul larutan monoiodoasetat pada 4 mg/50 µL sekali pada sendi kiri kaki belakang. Tikus tersebut telah diperhatikan selama empat minggu. Ujian kekuatan genggaman telah dilakukan sebelum suntikan dan setiap minggu selepas suntikan. Selepas empat minggu, femur dengan rawan yang tidak diaruh telah diambil untuk analisis histomorfometri. Kekuatan genggaman telah menurun secara signifikan pada tikus yang mempunyai osteoartritis berbanding dengan tikus normal (p<0.05). Pengambilan makanan telah berkurang secara signifikan satu minggu selepas aruhan monoiodoasetat (p<0.05), tetapi ia menjadi stabil selepas itu. Suntikan monoiodoasetat telah meningkatkan hakisan rawan dan bilangan osteoklas dalam tulang subkondral pada tikus yang mempunyai osteoartritis berbanding dengan tikus normal (p<0.05). Walau bagaimanapun, ia tidak mengganggu berat badan, aktiviti osteoblas, mineralisasi dan mikrostruktur pada tulang subkondral tikus osteoartritis (p>0.05). Secara kesimpulannya, osteoartritis aruhan monoiodoasetat memberi kesan terhadap rawan dan meningkatkan pembentukan osteoklas dalam tulang subkondral tikus.
Kata kunci: Femur; monoiodoasetat; osteoartritis; tulang subkondral
RUJUKAN
Al-Saadi, H.M., Chin, K.Y., Ahmad, F., Mohd Ramli, E.S.,
Arlamsyah, A.M., Japar Sidik, F.Z., Abdul Hamid, J. & Soelaiman, I.N. 2021.
Effects of palm tocotrienol-rich fraction alone or in combination with
glucosamine sulphate on grip strength, cartilage structure and joint
remodelling markers in a rat model of osteoarthritis. Applied Sciences 11: 18. https://doi.org/10.3390/app11188577
Asjid, R., Faisal, T., Qamar, K., Malik, S., Umbreen, F.
& Fatima, M. 2019. Effect of platelet-rich plasma on mankin scoring in
chemically-induced animal model of osteoarthritis. Journal of the College of
Physicians and Surgeons Pakistan 29(11): 1067-1071.
https://doi.org/10.29271/jcpsp.2019.11.1067
Ayhan, E., Kesmezacar, H. & Akgun, I. 2014.
Intraarticular injections (corticosteroid, hyaluronic acid, platelet rich
plasma) for the knee osteoarthritis. World Journal of Orthopedics 5(3):
351-361. https://doi.org/10.5312/wjo.v5.i3.351
Bagi, C.M., Berryman, E., Zakur, D.E., Wilkie, D. &
Andresen, C.J. 2015. Effect of antiresorptive and anabolic bone therapy on
development of osteoarthritis in a posttraumatic rat model of OA. Arthritis
Research & Therapy 17(1): 315.
https://doi.org/10.1186/s13075-015-0829-5
Burr, D.B. & Gallant, M.A. 2012. Bone remodelling in
osteoarthritis. Nature Reviews Rheumatology 8(11): 665-673.
https://doi.org/10.1038/nrrheum.2012.130
Chin, K.Y., Wong, S.K., Sidik, F.Z.J., Hamid, J.A., Abas,
N.H., Ramli, E.S.M., Mokhtar, S.A., Rajalingham, S. & Nirwana, S.I. 2019.
The effects of annatto tocotrienol supplementation on cartilage and subchondral
bone in an animal model of osteoarthritis induced by monosodium iodoacetate. International
Journal of Environmental Research and Public Health 16(16): 2897.
https://doi.org/10.3390/ijerph16162897
Cobos, E. & Portillo-Salido, E. 2013. “Bedside-to-Bench”
behavioral outcomes in animal models of pain: Beyond the evaluation of
reflexes. Current Neuropharmacology 11(6): 560-591.
https://doi.org/10.2174/1570159x113119990041
Deacon, R.M.J. 2013. Measuring the strength of mice. Journal
of Visualized Experiments 76: 2610. https://doi.org/10.3791/2610
Dulay, G.S., Cooper, C. & Dennison, E.M. 2015. Knee pain,
knee injury, knee osteoarthritis & work. Best Practice and Research:
Clinical Rheumatology 29(3): 454-461. https://doi.org/10.1016/j.berh.2015.05.005
Gallo, J., Raska, M., Kriegova, E. & Goodman, S.B. 2017.
Inflammation and its resolution and the musculoskeletal system. Journal of
Orthopaedic Translation 10: 52-67.
https://doi.org/10.1016/j.jot.2017.05.007
Guzman, R.E., Evans, M.G., Bove, S., Morenko, B. &
Kilgore, K. 2003. Mono-Iodoacetate-induced histologic changes in subchondral
bone and articular cartilage of rat femorotibial joints: AN animal model of
osteoarthritis. Toxicologic Pathology 31(6): 619-624.
https://doi.org/10.1080/01926230390241800
Henrotin, Y., Pesesse, L. & Sanchez, C. 2012. Subchondral
bone and osteoarthritis: Biological and cellular aspects. Osteoporosis
International 23(8 SUPPL): S847-51. https://doi.org/10.1007/s00198-012-2162-z
Henson, F.M.D. & Vincent, T.A. 2008. Alterations in the
vimentin cytoskeleton in response to single impact load in an in vitro model of cartilage damage in the rat. BMC Musculoskeletal Disorders 9(1): 94. https://doi.org/10.1186/1471-2474-9-94
Hügle, T. & Geurts, J. 2016. What drives osteoarthritis?
- synovial versus subchondral bone pathology. Rheumatology (Oxford) 56(9): 1461-1471. https://doi.org/10.1093/rheumatology/kew389
Hunter, D.J. 2011. Pharmacologic therapy for
osteoarthritis-the era of disease modification. Nature Reviews Rheumatology 7(1): 13-22. https://doi.org/10.1038/nrrheum.2010.178
Ji, B., Zhang, Z., Guo, W., Ma, H., Xu, B., Mu, W., Amat, A.
& Cao, L. 2018. Isoliquiritigenin blunts osteoarthritis by inhibition of
bone resorption and angiogenesis in subchondral bone. Scientific Reports 8(1): 1721. https://doi.org/10.1038/s41598-018-19162-y
Kulak, C.A.M. & Dempster, D.W. 2010. Bone
histomorphometry: A concise review for endocrinologists and clinicians. Arquivos
Brasileiros de Endocrinologia & Metabologia 54(2): 87-98.
https://doi.org/10.1590/S0004-27302010000200002
Lampropoulou-Adamidou, K., Lelovas, P., Karadimas, E.V.,
Liakou, C., Triantafillopoulos, I.K., Dontas, I. & Papaioannou, N.A. 2014.
Useful animal models for the research of osteoarthritis. European Journal of
Orthopaedic Surgery and Traumatology 24(3): 263-271. https://doi.org/10.1007/s00590-013-1205-2
Li, G., Yin, J., Gao, J., Cheng, T.S., Pavlos, N.J., Zhang,
C. & Zheng, M.H. 2013. Subchondral bone in osteoarthritis: Insight into
risk factors and microstructural changes. Arthritis Research and Therapy 15(6): 223. https://doi.org/10.1186/ar4405
Litwic, A., Edwards, M.H., Dennison, E.M. & Cooper, C.
2013. Epidemiology and burden of osteoarthritis. British Medical Bulletin 105: 185-199. https://doi.org/10.1093/bmb/lds038
McErlain, D.D., Ulici, V., Darling, M., Gati, J.S., Pitelka,
V., Beier, F. & Holdsworth, D.W. 2012. An in vivo investigation of
the initiation and progression of subchondral cysts in a rodent model of
secondary osteoarthritis. Arthritis Research and Therapy 14(1): R26-R26.
https://doi.org/10.1186/ar3727
Murat, N., Karadam, B., Ozkal, S., Karatosun, V. &
Gidener, S. 2007. Quantification of papain-induced rat osteoarthritis in
relation to time with the Mankin score. Acta
Orthopaedica Et Traumatologica Turcica 41(3): 233-237.
Namhong, S., Wongdee, K., Suntornsaratoon, P.,
Teerapornpuntakit, J., Hemstapat, R. & Charoenphandhu, N. 2020. Knee
osteoarthritis in young growing rats is associated with widespread osteopenia
and impaired bone mineralization. Scientific Reports 10(1): 15079.
https://doi.org/10.1038/s41598-020-71941-8
Network, G.B. of D. C. 2020. Global Burden of Disease
Study 2019 (GBD 2019) results. Osteoarthritis —level 3 cause. http://www.healthdata.org/results/gbd_summaries/2019/osteoarthritis-level-3-cause.
Otis, C., Guillot, M., Moreau, M., Martel-Pelletier, J.,
Pelletier, J.P., Beaudry, F. & Troncy, E. 2017. Spinal neuropeptide
modulation, functional assessment and cartilage lesions in a monosodium
iodoacetate rat model of osteoarthritis. Neuropeptides 65: 56-62.
https://doi.org/10.1016/j.npep.2017.04.009
Pitcher, T., Sousa-Valente, J. & Malcangio, M. 2016. The
monoiodoacetate model of osteoarthritis pain in the mouse. Journal of
Visualized Experiments 2016(111): 53746. https://doi.org/10.3791/53746
Robinson, W.H., Lepus, C.M., Wang, Q., Raghu, H., Mao, R.,
Lindstrom, T.M. & Sokolove, J. 2016. Low-grade inflammation as a key
mediator of the pathogenesis of osteoarthritis. Nature Reviews Rheumatology 12(10): 580-592. https://doi.org/10.1038/nrrheum.2016.136
Salo, P.T., Hogervorst, T., Seerattan, R.A., Rucker, D. &
Bray, R.C. 2002. Selective joint denervation promotes knee osteoarthritis in
the aging rat. Journal of Orthopaedic Research 20(6): 1256-1264.
https://doi.org/10.1016/S0736-0266(02)00045-1
Samvelyan, H.J., Hughes, D., Stevens, C. & Staines, K.A.
2021. Models of osteoarthritis: Relevance and new insights. Calcified Tissue
International 109(3): 243-256. https://doi.org/10.1007/s00223-020-00670-x
Sharma, V., Anuvat, K., John, L. & Davis, M. 2017. Scientific
American pain management-arthritis of the knee. Decker: Pain Related Disease
States.
Sinusas, K. 2012. Osteoarthritis: Diagnosis and treatment. American
Family Physician 85(1): 49-56.
Steinmeyer, J., Bock, F., Stöve, J., Jerosch, J. &
Flechtenmacher, J. 2018. Pharmacological treatment of knee osteoarthritis:
Special considerations of the new German guideline. Orthopedic Reviews 10(4): 7782. https://doi.org/10.4081/or.2018.7782
Sur, D. & Chakravorty, R. 2016. Relationship of thyroid
and sex hormones with osteoarthritis in postmenopausal Indian women. Journal
of Clinical Gynecology and Obstetrics 5(4): 117-120.
https://doi.org/10.14740/jcgo410e
Suri, S. & Walsh, D.A. 2012. Osteochondral alterations in
osteoarthritis. Bone 51(2): 204-211. https://doi.org/10.1016/j.bone.2011.10.010
Yang, Y., Li, P., Zhu, S. & Bi, R. 2020. Comparison of
early-stage changes of osteoarthritis in cartilage and subchondral bone between
two different rat models. PeerJ 2020(4): e8934-e8934.
https://doi.org/10.7717/peerj.8934
Zhang, L., Hu, H., Tian, F., Song, H. & Zhang, Y. 2011.
Enhancement of subchondral bone quality by alendronate administration for the
reduction of cartilage degeneration in the early phase of experimental
osteoarthritis. Clinical and Experimental Medicine 11(4): 235-243.
https://doi.org/10.1007/s10238-011-0131-z
*Pengarang untuk surat-menyurat; email: chinkokyong@ppukm.ukm.edu.my