Sains Malaysiana 51(11)(2022): 3795-3806
http://doi.org/10.17576/jsm-2022-5111-23
Spatial Quantile Autoregressive Model: Case Study of
Income Inequality in Indonesia
(Model Autoregresif Kuantil Reruang: Suatu Kajian Kes Ketaksamaan Pendapatan di
Indonesia)
EVELLIN DEWI LUSIANA1,2,*, HENNY PRAMOEDYO3 & BARIANTO NURASRI SUDARMAWAN4
1Department of Aquatic Resource Management, Faculty of
Fisheries and Marine Science, Universitas Brawijaya, Malang, 65145, Indonesia
2Department of
Mathematics, Faculty of Mathematics and Natural Science, Universitas Brawijaya Malang, 65145, Indonesia
3Department of Statistics, Faculty of Mathematics and
Natural Sciences, Universitas Brawijaya,
Malang, 65145, Indonesia
4Faculty of Economics, Universitas Islam Negeri Maulana Malik Ibrahim,
Malang, 65145, Indonesia
Diserahkan: 4 Disember 2021/Diterima: 19 Julai 2022
Abstract
Substantial
economic development in Indonesia has dramatically increased inequality in the
last decade. This issue will hinder the country’s long-term economic
development as well as creating socioeconomic instability and violence. This
study analysed the effects of macroeconomic factors such as gross regional
domestic product, investment, unemployment rate, and labour-force
participation, on Indonesian provinces’ inequality. Since the economic
development in Indonesia is mostly concentrated on Java Island, a spatial based
analysis was appropriate. In addition, we also considered a method that enabled
a specific level of inequality modelling, since previous studies used a
mean-based analysis. Therefore, we proposed a spatial quantile autoregressive
(SQAR) technique. The results showed that the Gini index of Indonesian
provinces had a significant positive spatial autocorrelation (SA). Regions with
similar Gini index values tended to
cluster together. In addition, local analysis of the SA showed Java Island as a
region that was characterized by high inequality, while Sumatra and Kalimantan
Island were not. By contrast, the SQAR model suggested that there were various
effects of macroeconomic factors on inequality at different levels of quantile.
As a consequence, distinct approaches to handling inequality should be taken
for provinces with low, medium, and high Gini index values.
Keywords: Gini index; Moran’s I; quantile regression; spatial connectivity
Abstrak
Pembangunan ekonomi yang besar di
Indonesia telah meningkatkan ketidaksamaan secara mendadak dalam dekad yang lalu. Isu ini akan menghalang pembangunan ekonomi jangka panjang negara serta mewujudkan ketidakstabilan sosioekonomi dan keganasan. Kajian ini menganalisis kesan faktor makroekonomi seperti keluaran dalam negara serantau kasar, pelaburan, kadar pengangguran dan penyertaan tenaga buruh terhadap ketidaksamaan wilayah Indonesia. Memandangkan pembangunan ekonomi di Indonesia kebanyakannya tertumpu di Pulau Jawa, analisis berasaskan reruang adalah sesuai. Di samping itu, kami juga mempertimbangkan kaedah yang membolehkan pemodelan ketaksamaan tahap tertentu, memandangkan kajian terdahulu menggunakan analisis berasaskan min. Oleh itu, kami mencadangkan teknik autoregresif kuantil reruang (SQAR). Keputusan menunjukkan bahawa indeks Gini Wilayah Indonesia mempunyai autokorelasi reruang (SA) positif yang signifikan. Kawasan yang mempunyai nilai indeks Gini yang serupa cenderung berkumpul bersama. Di samping itu, analisis tempatan SA mendedahkan Pulau Jawa sebagai wilayah yang dicirikan oleh ketidaksamaan yang tinggi, manakala Pulau Sumatera dan Kalimantan tidak. Sebaliknya, model SQAR mencadangkan bahawa terdapat pelbagai kesan faktor makroekonomi terhadap ketidaksamaan pada tahap kuantil yang berbeza. Akibatnya, pendekatan berbeza untuk mengendalikan ketidaksamaan harus diambil untuk wilayah yang mempunyai nilai indeks Gini rendah, sederhana dan tinggi.
Kata kunci: Indeks Gini; Moran's I; perhubungan reruang; regresi kuantil
RUJUKAN
Adrian, A. 2019. Empowerment strategies of micro, small,
medium enterprises (MSMEs) To improve Indonesia export performance. International
Journal of Economics, Business and Accounting Research (IJEBAR) 2(04):
50-60. DOI: 10.29040/ijebar.v2i04.222
Akita, T., Kurniawan, P.A. &
Miyata, S. 2011. Structural changes and regional income inequality in
Indonesia: A bidimensional decomposition analysis. Asian
Economic Journal 25(1): 55-77. DOI: 10.1111/j.1467-8381.2011.02053.x
Alesina,
A. & Rodrik, D. 1994. Distributive politics and
economic growth. The Quarterly Journal of Economics 109(2): 465-490.
DOI: 10.2307/2118470
Angrist, J., Chernozhukov, V.
& Fernández-Val, I. 2006. Quantile regression
under misspecification, with an application to the U.S. wage structure. Econometrica 74(2): 539-563.
Anselin,
L. 1995. Local Indicators of Spatial Association - LISA. Geographical
Analysis. 27(2): 93-115. DOI:
https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
Anselin,
L. 1988. Spatial Econometrics: Methods and Models. Dordrecht, The
Netherlands: Kluwer Academic Publishers.
Bakar, A.A., Hamdan, R. &
Sani, N.S. 2020. Ensemble learning for multidimensional poverty classification. Sains Malaysiana 49(2): 447-459. DOI: 10.17576/jsm-2020-4902-24
Balisacan,
A.M., Pernia, E.M. & Asra,
A. 2003. Revisiting Growth and Poverty Reduction in Indonesia: What do
Subnational Data Show? DOI: 10.1080/0007491032000142782
Bénabou,
R. 1996. Inequality and Growth. V. 11. MIT Press. DOI: 10.1086/654291.
BKPM. 2021. Realisasi Investasi di Indonesia Sepanjang Tahun 2020. https://www.bkpm.go.id/id/publikasi/siaran-pers/readmore/2413001/68601. Accessed on 2 June 2021.
Buchinsky,
M. 1994. Changes in U.S. wage structure 1963-1987: Applications of quantile
regression. Econometrica 62: 405-458.
Chernozhukov,
V. & Hansen, C. 2006. Instrumental quantile regression inference for
structural and treatment effect models. Journal of Econometrics 132(2):
491-525. DOI: https://doi.org/10.1016/j.jeconom.2005.02.009
Chunying,
Z. 2011. A quantile regression analysis on the relations between foreign direct
investment and technological innovation in China. In 2011 International
Conference of Information Technology, Computer Engineering and Management
Sciences. Volume 4. pp. 38-41. DOI: 10.1109/ICM.2011.233
Cliff, A.C. & Ord, J.K. 1973. Spatial Autocorrelation.
London: Pion Limited.
Constantine, C. 2017. Economic structures, institutions and
economic performance. Journal of Economic Structures 6(1): 2. DOI:
10.1186/s40008-017-0063-1
Dabla-Norris, E., Kochhar, K., Suphaphiphat,
N., Ricka, F. & Tsounta,
E. 2015. Causes and Consequences of Income Inequality: A Global Perspective.
DOI: 10.5089/9781513555188.006
Dorodjatoen,
A.M.H. 2019. DOI: 10.26182/5cca430b16437
Dudani,
S.A. 1976. The distance-weighted k-nearest-neighbor rule. IEEE Transactions
on Systems, Man, and Cybernetics. SMC-6(4): 325-327. DOI:
10.1109/TSMC.1976.5408784.
Fitzenberger,
B. 1997. Computational aspects of censored quantile regression. In 3rd
International Data Analysis based on L- 1-Statistical Procedures and Related
Methods. V. 31. Hayword, California: IMS Lecture
Notes Series. pp. 171-186.
Galiani,
S. & Titiunik, R. 2005. Changes in the Panamanian
wage structure: A quantile regression analysis. Económica L1(1-2): 3-27.
Gardeazabal,
J. & Ugidos, A. 2005. Gender wage discrimination
at quantiles. Journal of Population Economics 18(1): 165-179.
Girma, S. & Görg, H. 2003. Foreign direct investment, spillovers and
absorptive capacity: Evidence from quantile regressions. IIIS Discussion Paper
No. 1; GEP Working Paper No. 2002/14. DOI: 10.2139/ssrn.410742.
Hijrawadi,
S.N. & Adrian. 2019. Migration pattern of industrial workers in Bekasi
Regency. Jurnal SPATIAL Wahana Komunikasi dan Informasi Geografi 19(1):
25-31. DOI: 10.21009/spatial.191.04
Kaya, E. 2017. Quantile Regression and the Gender Wage
Gap: Is There a Glass Ceiling in the Turkish Labor Market? Cardiff Economic
Working Papers E2017/5, Cardiff University, Cardiff Business School, Economics
Section.
Keefer, P. & Knack, S. 2002. Polarization, politics and
property rights: Links between inequality and growth. Public Choice 111(1): 127-154. DOI: 10.1023/A:1015168000336
Khoirunurrofik,
K. 2017. Trends and determinants of the geographical distribution of economic
activities: Evidence from Indonesian manufacturing. Journal of Indonesian
Applied Economics 7(1): 18-47. DOI: 10.21776/ub.jiae.2017.007.01.2
Kim, T.H. & Muller, C. 2004. Two-stage quantile
regression when the first stage is based on quantile regression. The Econometrics
Journal 7(1): 218-231.
Koenker,
R. & Hallock, K. 2001. Quantile regressions. Journal
of Economic Perspectives 15: 143-156.
Lee, L.F. 2002. Consistency and efficiency of least squares
estimation for mixed regressive, spatial autoregressive models. Econometric
Theory 18: 252-277.
Lesage, J.P. 1997. Bayesian estimation of spatial
autoregressive models. International Regional Science Review 20(1-2):
113-129. DOI: 10.1177/016001769702000107
Liu, X. & Saraiva, P. 2015.
GMM estimation of SAR models with endogenous regressors. Regional Science and Urban Economics 55: 68-79. DOI:
https://doi.org/10.1016/j.regsciurbeco.2015.09.002
Majid, M.H.A. & Ibrahim, K. 2021. Composite pareto distributions for modelling household income
distribution in Malaysia. Sains Malaysiana 50(7): 2047-2058. DOI:
10.17576/jsm-2021-5007-19
Malikov,
E., Sun, Y. & Hite, D. 2019. (Under)Mining local residential property
values: A semiparametric spatial quantile autoregression. Journal of Applied Econometrics 34(1): 82-109. DOI: https://doi.org/10.1002/jae.2655
Naim, M., Rasidi, M., Sahani, M., Ali, M.,
Choy, E.A., Hafiz, M. & Abstrak, R. 2013. Application of geographical information
system for spatial-temporal mapping: A case study of dengue cases in Seremban, Negeri Sembilan, Malaysia. Sains Malaysiana 42(8): 1073-1080.
Nazara,
S. 2010. Pemerataan antardaerah sebagai tantangan utama transformasi struktural pembangunan ekonomi Indonesia masa depan. Jurnal Ekonomi dan Pembangunan Indonesia 11(1): 83-98. DOI: 10.21002/jepi.v11i1.183
Nugraha,
A. & Prayitno, G. 2020. Regional disparity in
western and eastern Indonesia. International Journal of Economics and
Business Administration VIII(Issue 4): 101-110.
DOI: 10.35808/ijeba/572
Rodriguez, N. & Chowdhury, A. 2013. Are there policy
lessons from the so-called Southeast Asian Model? ASEAN Journal of
Economics, Management and Accounting 1(June): 1-12.
SAAPE. 2019. Growing Inequality in South Asia South Asia
Inequality Report 2019.
Santoso,
Y.I. 2021. Ekonomi 2020 Masih Terpusat di Pulau Jawa, Ini Kata Ekonom CORE. https://nasional.kontan.co.id/news/ekonomi-2020-masih-terpusat-di-pulau-jawa-ini-kata-ekonom-core. Accessed on 2 June 2021.
Skoufias,
E. 2001. Changes in the regional inequality and social welfare in Indonesia
from 1996 to 1999. Journal of International Development 13(1): 73-91.
DOI: 10.1002/jid.750
Sukwika,
T. 2018. Peran pembangunan infrastruktur terhadap ketimpangan ekonomi antarwilayah di Indonesia. Jurnal Wilayah dan Lingkungan 6(2): 115. DOI: 10.14710/jwl.6.2.115-130
Sulistiyono,
S.T. & Rochwulaningsih, Y. 2013. Contest for
hegemony: The dynamics of inland and maritime cultures relations in the history
of Java Island, Indonesia. Journal of Marine and Island Cultures 2(2):
115-127. DOI: https://doi.org/10.1016/j.imic.2013.10.002
Suryahadi,
A., Yumna, A., Raya, U.R. & Marbun,
D. 2010. Review of Government’s Poverty Reduction Strategies, Policies, and
Programs in Indonesia. https://smeru.or.id/en/publication/review-government%E2%80%99s-poverty-reduction-strategies-policies-and-programs-indonesia
Tansel,
A., Keskin, H.I. & Ozdemir,
Z.A. 2020. Public-private sector wage gap by gender in Egypt: Evidence from
quantile regression on panel data, 1998-2018. World Development 135:
105060. DOI: 10.1016/j.worlddev.2020.1
Trzpiot,
G. & Orwat-Acedanska, A. 2016. Spatial quantile
regression in analysis of healthy life years in the European Union countries. Comparative
Economic Research 19(5). DOI: 10.1515/cer-2016-0044
Upton, G.J.G. & Fingleton, B.
1985. Spatial Data Analysis by Example. New York: Wiley.
Wei, Y.D. 2015. Spatiality of regional inequality. Applied
Geography 61: 1-10. https://doi.org/10.1016/j.apgeog.2015.03.013
Wicaksono,
E., Amir, H. & Nugroho, A. 2017. The Source of
Income Inequality in Indonesia: A Regression-Based Inequality Decomposition.
https://www.adb.org/publications/sources-income-inequality-indonesia
Williamson, J.G. 1965. Regional inequality and the process
of national development, development and cultural change. Journal of
Chemical Information and Modeling 13(4): 1-84.
Zhang, J., Lu, Q., Guan, L. & Wang, X. 2021. Analysis of
factors influencing energy efficiency based on spatial quantile autoregression: Evidence from the panel data in China. Energies 14(2): 504. DOI: 10.3390/en14020504
Zhuang, J., Kanbur, R. & Rhee,
C. 2014. Rising Inequality in Asia and Policy Implications. DOI:
10.2139/ssrn.2399298
*Pengarang untuk surat-menyurat; email:
evellinlusiana@ub.ac.id