Sains Malaysiana 51(12)(2022):
4043-4057
http://doi.org/10.17576/jsm-2022-5112-14
Pemodelan Semula Jantung dalam Kardiomiopati Diabetes: Peranan Inflamasi, Tekanan Oksidatif dan Apoptosis yang Mendasari Pembentukan dan Perkembangannya
(Cardiac Remodeling in Diabetic Cardiomyopathy: The Role
of Inflammation, Oxidative Stress and Apoptosis Underlying Its Formation and
Development)
FATIN FARHANA JUBAIDI1, SATIRAH
ZAINALABIDIN2, IZATUS SHIMA TAIB1, ZARIYANTEY ABD HAMID1 & SITI BALKIS BUDIN1,*
1Pusat Kajian Diagnostik, Teraputik dan Penyiasatan, Fakulti Sains
Kesihatan, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Wilayah Persekutuan, Malaysia
2Pusat Kajian Toksikologi dan Risiko Kesihatan, Fakulti Sains Kesihatan, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Wilayah
Persekutuan, Malaysia
Diserahkan: 16 Jun 2021/Diterima: 4 Ogos 2022
Abstrak
Kardiomiopati diabetes (DCM) merupakan komplikasi kronik diabetes melitus akibat daripada perubahan pada fungsi dan struktur jantung yang diaruh oleh keadaan aras gula darah yang tinggi (hiperglisemia) secara berpanjangan. Walaupun pengawalan hiperglisemia dilakukan dengan komprehensif serta perubahan gaya hidup yang lebih sihat, komplikasi kardiovaskular termasuklah DCM terus menjadi antara punca kematian utama pesakit diabetes. Pembentukan dan perkembangan DCM adalah akibat proses kompensasi melalui pemodelan semula jantung yang melibatkan kematian kardiomiosit hasil daripada kerosakan oksidatif, apoptosis
dan inflamasi susulan aruhan hiperglisemia yang tidak terkawal. Walaupun permodelan semula jantung merupakan proses yang penting dalam memulihara struktur dan fungsi jantung, namun dalam keadaan diabetes, rangsangan pemodelan semula jantung yang berpanjangan boleh membawa kepada kemorosotan fungsi yang kekal dan akhirnya menyebabkan kegagalan jantung. Memahami mekanisme yang terlibat dalam pembentukan dan perkembangan DCM adalah sangat penting bagi merangka strategi untuk mengurangkan komplikasi akibat penyakit ini. Oleh itu, dalam kertas ulasan ini, hasil kajian terkini mengenai proses pemodelan semula jantung dalam perkembangan DCM dan mekanisme utama yang mendasari pembentukan dan perkembangannya akan diperjelaskan.
Kata kunci: Apoptosis; fibrosis; hipertrofi; inflamasi; tekanan oksidatif
Abstract
Diabetic cardiomyopathy (DCM) is one of diabetes mellitus-induced
chronic complications resulting from disturbances in cardiac structure and
function due to persistent high level of glucose in blood (hyperglycemia).
Even with comprehensive control of hyperglycemia and
changing of lifestyle towards a healthy one, cardiovascular complications
including DCM continue to become among the leading causes of death among
diabetic patients. The development and progression of DCM are the consequence
of compensative cardiac remodeling resulting from
cardiomyocyte death induced by oxidative damage, apoptosis, and inflammation
following uncontrolled hyperglycemia. Although
cardiac remodeling is a critical homeostasis process
aimed to conserve cardiac structure and function, persistent
stimulation in diabetic condition results in irreversible deterioration in
cardiac function that may end up as heart failure. Understanding the mechanisms
involved in the development and progression of DCM is of utmost importance in
order to strategize against DCM complications. Therefore, this review paper
compiled the recent discoveries regarding the cardiac remodeling process in DCM as well as unfolding the main mechanisms that underlie its
development and progression.
Keywords:
Apoptosis; fibrosis; hypertrophy; inflammation; oxidative stress
RUJUKAN
Abdi, T., Mahmoudabady, M., Marzouni, H.Z., Niazmand, S. & Khazaei,
M. 2021. Ginger (Zingiber officinale Roscoe) extract protects the heart
against inflammation and fibrosis in diabetic rats. Canadian Journal of
Diabetes 45(3): 220-227.
Abedin, M. & King, N.
2010. Diverse evolutionary paths to cell adhesion. Trends in Cell Biology 20(12): 734-742.
Al-Rasheed, N.M.,
Al-Rasheed, N.M., Hasan, I.H., Al-Amin, M.A., Al-Ajmi,
H.N., Mohamad, R.A. & Mahmoud, A.M. 2017. Simvastatin ameliorates diabetic
cardiomyopathy by attenuating oxidative stress and inflammation in rats. Oxidative
Medicine and Cellular Longevity 2017: 1092015.
Ali, S.S., Mohamed, S., Rozalei, N.H., Boon, Y.W. & Zainalabidin,
S. 2019. Anti-fibrotic actions of Roselle extract in rat model of myocardial
infarction. Cardiovascular Toxicology 19(1): 72-81.
Anderson, E.J., Rodriguez,
E., Anderson, C.A., Thayne, K., Chitwood, W.R. & Kypson,
A.P. 2011. Increased propensity for cell death in diabetic human heart is
mediated by mitochondrial-dependent pathways. American Journal of
Physiology. Heart and Circulatory Physiology 300(1): H118-H124.
Aneja, A., Tang, W.W., Bansilal,
S., Garcia, M.J. & Farkouh, M.E. 2008. Diabetic
cardiomyopathy: Insights into pathogenesis, diagnostic challenges, and
therapeutic options. American Journal of Medicine 121: 748-757.
Asbun, J., Manso, A.M. &
Villarreal, F.J. 2005. Profibrotic influence of high glucose concentration on
cardiac fibroblast functions: Effects of losartan and vitamin E. American
Journal of Physiology-Heart and Circulatory Physiology 288: H227-H234.
Atale, N., Yadav, D., Rani, V. & Jin,
J.O. 2020. Pathophysiology, clinical characteristics of diabetic
cardiomyopathy: Therapeutic potential of natural polyphenols. Frontiers in
Nutrition 7: 564352.
Atta, M.S., El-Far, A.H., Farrag, A.F., Abdel-Daim, M.M.,
Al Jaouni, S.K. & Mousa, S.A. 2018. Thymoquinone
attenuates cardiomyopathy in streptozotocin-treated diabetic rats. Oxidative
Medicine and Cellular Longevity 2018: 7845681.
Avery, N.C. & Bailey,
A.J. 2006. The effects of the Maillard reaction on the physical properties and
cell interactions of collagen. Pathologie-Biologie 54(7): 387-395.
Azevedo, P.S., Polegato, B.F., Minicucci, M.F.,
Paiva, S.A. & Zornoff, L.A. 2016. Cardiac remodeling: Concepts, clinical impact, pathophysiological
mechanisms and pharmacologic treatment. Arquivos Brasileiros de Cardiologia 106(1): 62-69.
Bayes-Genis A. 2007. Hypertrophy and inflammation: Too much for one heart. European
Heart Journal 28(6): 661-663.
Bayeva, M., Sawicki, K.T. & Ardehali,
H. 2013. Taking diabetes to heart - deregulation of myocardial lipid metabolism
in diabetic cardiomyopathy. Journal of the American Heart Association 2 :e000433.
Benjamin, M.M. &
Khalil, R.A. 2012. Matrix metalloproteinase inhibitors as investigative tools
in the pathogenesis and management of vascular disease. Experientia Supplementum 103: 209-279.
Bonnet, F. & Scheen, A. 2017. Understanding and overcoming metformin
gastrointestinal intolerance. Diabetes, Obesity and Metabolism 19(4):
473-481.
Budin, S.B., Sharifuddin, N.A., Jubaidi, F.F. & Zainalabidin,
S. 2019. The potential of Hibiscus sabdariffa Linn. (Roselle)
polyphenol-rich extract as a cardioprotective agent in myocardial infarction
model. Jurnal Teknologi 81(5): 25-31.
Cambronero, F., Marín, F., Roldán, V., Hernández-Romero, D., Valdés, M. & Lip,
G.Y. 2009. Biomarkers of pathophysiology in hypertrophic cardiomyopathy:
Implications for clinical management and prognosis. European Heart Journal 30(2): 139-151.
Chen, X., Liu, G., Zhang,
W., Zhang, J., Yan, Y., Dong, W., Liang, E., Zhang, Y. & Zhang, M. 2015.
Inhibition of MEF2A prevents hyperglycemia-induced
extracellular matrix accumulation by blocking Akt and TGF-β1/Smad activation in cardiac fibroblasts. The
International Journal of Biochemistry & Cell Biology 69: 52-61.
Chen, Y.F., Shibu, M.A., Fan, M.J., Chen, M.C., Viswanadha, V.P., Lin, Y.L., Lai, C.H., Lin, K.H., Ho,
T.J., Kuo, W.W. & Huang, C.Y. 2016. Purple rice
anthocyanin extract protects cardiac function in STZ-induced diabetes rat
hearts by inhibiting cardiac hypertrophy and fibrosis. The Journal of Nutritional
Biochemistry 31: 98-105.
Chong, S.A., Lee, W., Arora, P.D., Laschinger,
C., Young, E.W., Simmons, C.A., Manolson, M., Sodek, J. & McCulloch, C.A. 2007. Methylglyoxal
inhibits the binding step of collagen phagocytosis. The Journal of
Biological Chemistry 282(11): 8510-8520.
Cohn, J.N., Ferrari, R.
& Sharpe, N. 2000. Cardiac remodeling--concepts
and clinical implications: A consensus paper from an international forum on
cardiac remodeling. Behalf of an international forum
on cardiac remodeling. Journal of the American
College of Cardiology 35(3): 569-582.
Cowling, R.T., Kupsky, D., Kahn, A.M., Daniels, L.B. & Greenberg, B.H.
2019. Mechanisms of cardiac collagen deposition in experimental models and
human disease. Translational Research: The Journal of Laboratory and
Clinical Medicine 209: 138-155.
Cox, E.J. & Marsh, S.A.
2014. A systematic review of fetal genes as
biomarkers of cardiac hypertrophy in rodent models of diabetes. PloS ONE 9(3): e92903.
D'Arcy, M.S. 2019. Cell
death: A review of the major forms of apoptosis, necrosis and autophagy. Cell
Biology International 43(6): 582-592.
de Simone, G., Devereux,
R.B., Chinali, M., Lee, E.T., Galloway, J.M., Barac, A., Panza, J.A. &
Howard, B.V. 2010. Diabetes and incident heart failure in hypertensive and
normotensive participants of the strong heart study. Journal of Hypertension 28(2): 353-360.
Diao, J., Wei, J., Yan, R., Fan, G., Lin, L. & Chen,
M. 2019. Effects of resveratrol on regulation on UCP2 and cardiac function in
diabetic rats. Journal of Physiology and Biochemistry 75(1):
39-51.
Dillmann, W.H. 2019. Diabetic cardiomyopathy. Circulation
Research 124(8): 1160-1162.
Disertori, M., Masè, M. & Ravelli, F. 2017. Myocardial fibrosis predicts ventricular
tachyarrhythmias. Trends in Cardiovascular Medicine 27(5): 363-372.
Dos Santos, K.C., Cury, S.S., Ferraz, A., Corrente, J.E., Gonçalves, B.M., de Araújo Machado, L.H.,
Carvalho, R.F., de Melo Stevanato Nakamune,
A.C., Fabro, A.T., Freire, P.P. & Corrêa, C.R. 2018. Recovery of cardiac remodeling and dysmetabolism by pancreatic islet injury improvement in diabetic rats after yacon leaf extract treatment. Oxidative
Medicine and Cellular Longevity 2018: 1821359.
Eguchi, K., Boden-Albala, B., Jin, Z., Rundek, T., Sacco, R.L.,
Homma, S. & Di Tullio, M.R. 2008. Association
between diabetes mellitus and left ventricular hypertrophy in a multiethnic population. American Journal of Cardiology 101(12): 1787-1791.
Einarson, T.R., Acs, A., Ludwig, C.
& Panton, U.H. 2018. Prevalence of cardiovascular disease in type 2
diabetes: A systematic literature review of scientific evidence from across the
world in 2007-2017. Cardiovascular Diabetology 17(1): 83.
EXpert Group on Biomarkers. 2014. Biomarkers in cardiology--part
1--in heart failure and specific cardiomyopathies. Arquivos Brasileiros de Cardiologia 103(6): 451-459.
Falcão-Pires, I. & Leite-Moreira,
A.F. 2012. Diabetic cardiomyopathy: Understanding the molecular and cellular
basis to progress in diagnosis and treatment. Heart Failure Reviews 17(3): 325-344.
Fowlkes, V., Clark, J.,
Fix, C., Law, B.A., Morales, M.O., Qiao, X., Ako-Asare, K., Goldsmith, J.G., Carver, W., Murray, D.B.
& Goldsmith, E.C. 2013. Type II diabetes promotes a myofibroblast phenotype
in cardiac fibroblasts. Life Sciences 92(11): 669-676.
Frieler, R.A. & Mortensen, R.M. 2015. Immune cell and
other noncardiomyocyte regulation of cardiac hypertrophy and remodeling. Circulation 131(11): 1019-1030.
Geraldes, P. & King, G.L. 2010. Activation of protein
kinase C isoforms and its impact on diabetic complications. Circulation
Research 106(8): 1319-1331.
Gogula, S.V., Divakar, C., Satyanarayana, C., Kumar, Y.P.
& Lavanaya, V.S. 2013. Computational
investigation of pkcβ inhibitors for the
treatment of diabetic retinopathy. Bioinformation 9(20): 1040-1043.
Huang, M.L., Chiang, S.,
Kalinowski, D.S., Bae, D.H., Sahni, S. &
Richardson, D.R. 2019. The role of the antioxidant response in mitochondrial
dysfunction in degenerative diseases: Crosstalk between antioxidant defense, autophagy, and apoptosis. Oxidative Medicine
and Cellular Longevity 2019:
6392763.
Huynh, K., Bernardo, B.C., Mcmullen, J.R. & Ritchie, R.H. 2014. Diabetic
cardiomyopathy: Mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacology & Therapeutics 142(3): 375-415.
Huynh, K., Kiriazis, H., Du,
X-J., Love, J.E., Gray, S.P., Jandeleit-Dahm, K.A., Mcmullen, J.R. & Ritchie, R.H. 2013. Targeting the
upregulation of reactive oxygen species subsequent to hyperglycemia prevents type 1 diabetic cardiomyopathy in mice. Free Radical Biology and
Medicine 60: 307-317.
Izzicupo, P., D'Amico, M.A., Bascelli,
A., Di Fonso, A., D'Angelo, E., Di Blasio, A., Bucci,
I., Napolitano, G., Gallina, S. & Di Baldassarre. 2013. Walking training affects
dehydroepiandrosterone sulfate and inflammation
independent of changes in spontaneous physical activity. Menopause 20(4): 455-463.
Jia, G., Hill, M.A. &
Sowers, J.R. 2018. Diabetic cardiomyopathy: An update of mechanisms contributing
to this clinical entity. Circulation Research 122(4): 624-638.
Jia, G., DeMarco, V.G.
& Sowers, J.R. 2016. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nature reviews. Endocrinology 12(3):
144-153.
Joseph, B., Shimojo, G., Li, Z., Thompson-Bonilla, M., Shah, R., Kanashiro, A., Salgado, H.C. & Ulloa, L. 2019. Glucose
activates vagal control of hyperglycemia and
inflammation in fasted mice. Scientific Reports 9(1): 1012.
Jubaidi, F.F., Zainalabidin, S., Taib, I.S., Hamid, Z.A. & Budin,
S.B. 2021. The potential role of flavonoids in ameliorating diabetic
cardiomyopathy via alleviation of cardiac oxidative stress, inflammation and
apoptosis. International Journal of Molecular Sciences 22(10): 5094.
Kawanami, D., Matoba, K. & Utsunomiya,
K. 2016. Signaling pathways in diabetic nephropathy. Histology
and Histopathology 31(10): 1059-1067.
Lee, J.K. & Kim, N.J.
2017. Recent advances in the inhibition of p38 MAPK as a potential strategy for
the treatment of Alzheimer’s disease. Molecules 22(8): E1287.
Levick, S.P. & Widiapradja, A.
2020. The diabetic cardiac fibroblast: Mechanisms underlying phenotype and
function. International Journal of Molecular Sciences 21(3): 970.
Li, L., Luo, W., Qian, Y., Zhu, W., Qian, J., Li, J., Jin, Y., Xu, X. & Liang, G. 2019. Luteolin protects
against diabetic cardiomyopathy by inhibiting NF-κB-mediated
inflammation and activating the Nrf2-mediated antioxidant responses. Phytomedicine:
International Journal of Phytotherapy and Phytopharmacology 59: 152774.
Liu, X., Qi, F. & Wu, W. 2014. Effect of
intervention in the diacylglycerol‑protein kinase C signaling pathway on JNK1 expression and its downstream signaling in diabetic cardiomyopathy. Molecular Medicine Reports 9(3): 979-984.
Liu, J., Zhuo, X., Liu, W.,
Wan, Z., Liang, X., Gao, S., Yuan, Z. & Wu, Y. 2015. Resveratrol inhibits
high glucose induced collagen upregulation in cardiac fibroblasts through
regulating TGF-β1-Smad3 signaling pathway. Chemico-Biological Interactions 227:
45-52.
Liu, Q., Han, Q., Lu, M., Wang, H. & Tang, F.
2019. Lycium barbarum polysaccharide attenuates cardiac hypertrophy, inhibits calpain-1 expression
and inhibits NF-κB activation in
streptozotocin-induced diabetic rats. Experimental and Therapeutic Medicine 18(1):
509-516.
Malik, S., Suchal, K., Khan,
S.I., Bhatia, J., Kishore, K., Dinda, A.K. &
Arya, D.S. 2017. Apigenin ameliorates streptozotocin-induced diabetic
nephropathy in rats via MAPK-NF-κB-TNF-α
and TGF-β1-MAPK-fibronectin pathways. American Journal of Physiology
Renal Physiology 313(2): F414-F422.
Mann, D.L. 2015 Innate
immunity and the failing heart: The cytokine hypothesis revisited. Circulation
Research 116(7): 1254-1268.
Martufi, G. & Gasser, T.C. 2012. Turnover of fibrillar
collagen in soft biological tissue with application to the expansion of
abdominal aortic aneurysms. Journal of the Royal Society, Interface 9(77): 3366-3377.
Marwick, T.H., Ritchie, R.,
Shaw, J.E. & Kaye, D. 2018. Implications of underlying mechanisms
for the recognition and management of diabetic cardiomyopathy. Journal
of the American College of Cardiology 71(3): 339-351.
Moe, G.W. &
Marín-García, J. 2016. Role of cell death in the progression of heart failure. Heart
Failure Reviews 21(2): 157-167.
Mohammed Yusof, N.L., Zainalabidin, S., Mohd Fauzi, N. & Budin, S.B. 2018. Hibiscus sabdariffa (Roselle) polyphenol-rich extract averts cardiac
functional and structural abnormalities in type 1 diabetic rats. Applied Physiology, Nutrition, and Metabolism 43: 1224-1232.
NHMS. 2015. Institute for
Public Health (IPH). National Health and Morbidity Survey 2015 (NHMS 2015).
Vol. II: Non-Communicable Diseases, Risk Factors & Other Health Problems.
Oka, T. & Komuro, I. 2008. Molecular mechanisms underlying the
transition of cardiac hypertrophy to heart failure. Circulation Journal 72(SupplementA): A13-A16.
Othman, A.I., El-Sawi, M.R., El-Missiry, M.A.
& Abukhalil, M.H. 2017. Epigallocatechin-3-
gallate protects against diabetic cardiomyopathy through modulating the cardio-
metabolic risk factors, oxidative stress, inflammation, cell death and fibrosis
in streptozotocin-nicotinamide-induced diabetic rats. Biomedicine and
Pharmacotherapy 94: 362-373.
Paolillo, S., Marsico, F., Prastaro, M., Renga, F.,
Esposito, L. & De Martino, F. 2019. Diabetic cardiomyopathy: Definition,
diagnosis, and therapeutic implications. Heart Failure Clinics 15: 341-347.
Paulus, W.J. & Dal
Canto, E. 2018. Distinct myocardial targets for diabetes therapy in heart
failure with preserved or reduced ejection fraction. JACC Heart Failure 6: 1-7.
Prabhu, S.D. & Frangogiannis, N.G. 2016. The biological basis for cardiac
repair after myocardial infarction: From inflammation to fibrosis. Circulation
Research 119(1): 91-112.
Rajesh, M., Mukhopadhyay,
P., Bátkai, S., Patel, V., Saito, K., Matsumoto, S., Kashiwaya, Y., Horváth, B.,
Mukhopadhyay, B. & Becker, L. 2010. Cannabidiol attenuates cardiac
dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy. Journal
of the American College of Cardiology 56: 2115-2125.
Rienks, M., Papageorgiou, A.P., Frangogiannis,
N.G. & Heymans, S. 2014. Myocardial extracellular matrix: An ever-changing
and diverse entity. Circulation Research 114(5): 872-888.
Ritchie, R.H., Irvine,
J.C., Rosenkranz, A.C., Patel, R., Wendt, I.R., Horowitz, J.D. &
Kemp-Harper, B.K. 2009. Exploiting cGMP-based therapies for the prevention of
left ventricular hypertrophy: NO* and beyond. Pharmacology &
Therapeutics 124(3): 279-300.
Ritchie, R.H. & Abel,
E.D. 2020. Basic mechanisms of diabetic heart disease. Circulation
Research 126(11): 1501-1525.
Ruan, Y., Jin, Q., Zeng, J.,
Ren, F., Xie, Z., Ji, K., Wu, L., Wu, J. & Li, L.
2020. Grape seed proanthocyanidin extract ameliorates
cardiac remodelling after myocardial infarction through PI3K/AKT pathway in
mice. Frontiers in Pharmacology 11: 585984.
Schubert, M., Hansen, S., Leefmann, J. & Guan, K. 2020. Repurposing antidiabetic
drugs for cardiovascular disease. Frontiers in Physiology 11: 568632.
Sedgwick, B., Riches, K., Bageghni,
S.A., O'Regan, D.J., Porter, K.E. & Turner, N.A.
2014. Investigating inherent functional differences between human cardiac
fibroblasts cultured from nondiabetic and Type 2 diabetic donors. Cardiovascular
Pathology: The Official Journal of the Society for Cardiovascular Pathology 23(4):
204-210.
Seferovic, P.M. & Paulus, W.J. 2015. Clinical diabetic
cardio- myopathy: A two-faced disease with restrictive and dilated phenotypes. European
Heart Journal 36(27): 1718-1727.
Singh, R.M., Cummings, E.,
Pantos, C. & Singh, J. 2017. Protein kinase C and cardiac dysfunction: A
review. Heart Failure Reviews 22(6): 843-859.
Soetikno, V., Sari, F.R., Sukumaran, V., Lakshmanan, A.P.,
Mito, S., Harima, M., Thandavarayan, R.A., Suzuki,
K., Nagata, M. & Takagi, R. 2012. Curcumin prevents diabetic cardiomyopathy
in streptozotocin-induced diabetic rats: Possible involvement of Pkc–Mapk signaling pathway. European Journal of Pharmaceutical Sciences 47(3): 604-614.
Sun, L., Yu, M., Zhou, T.,
Zhang, S., He, G., Wang, G. & Gang, X. 2019. Current advances in the study
of diabetic cardiomyopathy: From clinicopathological features to molecular
therapeutics (Review). Molecular Medicine Reports 20(3): 2051-2062.
Tate, M., Deo, M., Cao,
A.H., Hood, S.G., Huynh, K., Kiriazis, H., Du, X.J.,
Julius, T.L., Figtree, G.A., Dusting, G.J., Kaye, D.M. & Ritchie, R.H.
2017. Insulin replacement limits progression of diabetic cardiomyopathy in the
low-dose streptozotocin-induced diabetic rat. Diabetes and Vascular Disease
Research 14(5): 423-433.
van Empel, V.P. & De Windt, L.J. 2004. Myocyte hypertrophy and apoptosis: A
balancing act. Cardiovascular Research 63(3): 487-499.
Volpe, C., Villar-Delfino, P.H., Dos Anjos, P. &
Nogueira-Machado, J.A. 2018. Cellular death, reactive oxygen species (ROS) and
diabetic complications. Cell Death & Disease 9(2): 119.
Wang, Y., Zheng, X., Li,
L., Wang, H., Chen, K., Xu, M., Wu, Y., Huang, X., Zhang, M., Ye, X., Xu, T.,
Chen, R. & Zhu, Y. 2020. Cyclocarya paliurus ethanol leaf extracts protect against diabetic
cardiomyopathy in db/db mice via regulating PI3K/Akt/NF-κB signaling. Food & Nutrition Research 64:
10.29219/fnr.v64.4267.
Wu, W., Liu, X. & Han,
L. 2019. Apoptosis of cardiomyocytes in diabetic cardiomyopathy involves overexpression
of glycogen synthase kinase-3β. Bioscience Reports 39(1):
BSR20171307.
Wu, X., Huang, L., Zhou, X.
& Liu, J. 2020. Curcumin protects cardiomyopathy damage through inhibiting
the production of reactive oxygen species in Type 2 diabetic mice. Biochemical
and Biophysical Research Communications 530(1): 15-21.
Yamazaki, K.G., Gonzalez,
E. & Zambon, A.C. 2012. Crosstalk between the
renin-angiotensin system and the advance glycation end product axis in the
heart: role of the cardiac fibroblast. Journal of Cardiovascular
Translational Research 5(6): 805-813.
Yan, R., Shan, H., Lin, L.,
Zhang, M., Diao, J-Y., Li, Q., Liu, X. & Wei, J.
2016. Chronic resveratrol treatment improves cardiac function in a rat model of
diabetic cardiomyopathy via attenuation of mitochondrial injury and myocardial
apoptosis. International Journal of Clinical and Experimental Medicine 9(11): 21156-21167.
Yusof, N.L.M., Affendi, T.N.T.T., Jubaidi, F.F., Zainalabidin, S. & Budin,
S.B. 2020. Hibiscus sabdariffa Linn. (Roselle) polyphenols-rich extract
prevents hyperglycemia-induced cardiac oxidative
stress and mitochondrial damage in diabetic rats. Sains Malaysiana 49(10): 2499-2506.
Zhang, Y., Pizzute, T. & Pei, M. 2014. A review of crosstalk
between MAPK and Wnt signals and its impact on
cartilage regeneration. Cell and Tissue Research 358(3): 633-649.
Zhang, L., Mao, Y., Pan,
J., Wang, S., Chen, L. & Xiang, J. 2017. Bamboo leaf extract ameliorates
cardiac fibrosis possibly via alleviating inflammation, oxidative stress and
apoptosis. Biomedicine & Pharmacotherapy 95: 808-817.
Zhang, J., Qiu, H., Huang, J., Ding, S., Huang, B., Wu, Q. &
Jiang, Q. 2018. Naringenin exhibits the protective effect on cardiac
hypertrophy via EETs-PPARs activation in streptozocin-induced
diabetic mice. Biochemical and Biophysical Research Communications 502(1): 55-61.
Zhao, Q., Jia, T.Z., Cao,
Q.C., Tian, F. & Ying, W.T. 2018. A crude 1-DNJ extract from home made Bombyx batryticatus inhibits diabetic cardiomyopathy-Associated fibrosis in db/db mice and reduces protein N-Glycosylation levels. International
Journal of Molecular Sciences 19(6): 1699.
*Pengarang untuk surat-menyurat; email: balkis@ukm.edu.my
|