Sains Malaysiana 51(12)(2022): 4043-4057

http://doi.org/10.17576/jsm-2022-5112-14

 

Pemodelan Semula Jantung dalam Kardiomiopati Diabetes:  Peranan Inflamasi, Tekanan Oksidatif dan Apoptosis yang Mendasari Pembentukan dan Perkembangannya

(Cardiac Remodeling in Diabetic Cardiomyopathy: The Role of Inflammation, Oxidative Stress and Apoptosis Underlying Its Formation and Development)

 

FATIN FARHANA JUBAIDI1, SATIRAH ZAINALABIDIN2, IZATUS SHIMA TAIB1, ZARIYANTEY ABD HAMID1 & SITI BALKIS BUDIN1,*

 

1Pusat Kajian Diagnostik, Teraputik dan Penyiasatan, Fakulti Sains Kesihatan, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Wilayah Persekutuan, Malaysia

2Pusat Kajian Toksikologi dan Risiko Kesihatan, Fakulti Sains Kesihatan, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Wilayah Persekutuan, Malaysia

 

Diserahkan: 16 Jun 2021/Diterima: 4 Ogos 2022

 

Abstrak

Kardiomiopati diabetes (DCM) merupakan komplikasi kronik diabetes melitus akibat daripada perubahan pada fungsi dan struktur jantung yang diaruh oleh keadaan aras gula darah yang tinggi (hiperglisemia) secara berpanjangan. Walaupun pengawalan hiperglisemia dilakukan dengan komprehensif serta perubahan gaya hidup yang lebih sihat, komplikasi kardiovaskular termasuklah DCM terus menjadi antara punca kematian utama pesakit diabetes. Pembentukan dan perkembangan DCM adalah akibat proses kompensasi melalui pemodelan semula jantung yang melibatkan kematian kardiomiosit hasil daripada kerosakan oksidatif, apoptosis dan inflamasi susulan aruhan hiperglisemia yang tidak terkawal. Walaupun permodelan semula jantung merupakan proses yang penting dalam memulihara struktur dan fungsi jantung, namun dalam keadaan diabetes, rangsangan pemodelan semula jantung yang berpanjangan boleh membawa kepada kemorosotan fungsi yang kekal dan akhirnya menyebabkan kegagalan jantung. Memahami mekanisme yang terlibat dalam pembentukan dan perkembangan DCM adalah sangat penting bagi merangka strategi untuk mengurangkan komplikasi akibat penyakit ini. Oleh itu, dalam kertas ulasan ini, hasil kajian terkini mengenai proses pemodelan semula jantung dalam perkembangan DCM dan mekanisme utama yang mendasari pembentukan dan perkembangannya akan diperjelaskan.

 

Kata kunci: Apoptosis; fibrosis; hipertrofi; inflamasi; tekanan oksidatif

 

Abstract

Diabetic cardiomyopathy (DCM) is one of diabetes mellitus-induced chronic complications resulting from disturbances in cardiac structure and function due to persistent high level of glucose in blood (hyperglycemia). Even with comprehensive control of hyperglycemia and changing of lifestyle towards a healthy one, cardiovascular complications including DCM continue to become among the leading causes of death among diabetic patients. The development and progression of DCM are the consequence of compensative cardiac remodeling resulting from cardiomyocyte death induced by oxidative damage, apoptosis, and inflammation following uncontrolled hyperglycemia. Although cardiac remodeling is a critical homeostasis process aimed to conserve cardiac structure and function, persistent stimulation in diabetic condition results in irreversible deterioration in cardiac function that may end up as heart failure. Understanding the mechanisms involved in the development and progression of DCM is of utmost importance in order to strategize against DCM complications. Therefore, this review paper compiled the recent discoveries regarding the cardiac remodeling process in DCM as well as unfolding the main mechanisms that underlie its development and progression.

 

Keywords: Apoptosis; fibrosis; hypertrophy; inflammation; oxidative stress

 

RUJUKAN

Abdi, T., Mahmoudabady, M., Marzouni, H.Z., Niazmand, S. & Khazaei, M. 2021. Ginger (Zingiber officinale Roscoe) extract protects the heart against inflammation and fibrosis in diabetic rats. Canadian Journal of Diabetes 45(3): 220-227.

Abedin, M. & King, N. 2010. Diverse evolutionary paths to cell adhesion. Trends in Cell Biology 20(12): 734-742.

Al-Rasheed, N.M., Al-Rasheed, N.M., Hasan, I.H., Al-Amin, M.A., Al-Ajmi, H.N., Mohamad, R.A. & Mahmoud, A.M. 2017. Simvastatin ameliorates diabetic cardiomyopathy by attenuating oxidative stress and inflammation in rats. Oxidative Medicine and Cellular Longevity 2017: 1092015.

Ali, S.S., Mohamed, S., Rozalei, N.H., Boon, Y.W. & Zainalabidin, S. 2019. Anti-fibrotic actions of Roselle extract in rat model of myocardial infarction. Cardiovascular Toxicology 19(1): 72-81.

Anderson, E.J., Rodriguez, E., Anderson, C.A., Thayne, K., Chitwood, W.R. & Kypson, A.P. 2011. Increased propensity for cell death in diabetic human heart is mediated by mitochondrial-dependent pathways. American Journal of Physiology. Heart and Circulatory Physiology 300(1): H118-H124.

Aneja, A., Tang, W.W., Bansilal, S., Garcia, M.J. & Farkouh, M.E. 2008. Diabetic cardiomyopathy: Insights into pathogenesis, diagnostic challenges, and therapeutic options. American Journal of Medicine 121: 748-757.

Asbun, J., Manso, A.M. & Villarreal, F.J. 2005. Profibrotic influence of high glucose concentration on cardiac fibroblast functions: Effects of losartan and vitamin E. American Journal of Physiology-Heart and Circulatory Physiology 288: H227-H234.

Atale, N., Yadav, D., Rani, V. & Jin, J.O. 2020. Pathophysiology, clinical characteristics of diabetic cardiomyopathy: Therapeutic potential of natural polyphenols. Frontiers in Nutrition 7: 564352.

Atta, M.S., El-Far, A.H., Farrag, A.F., Abdel-Daim, M.M., Al Jaouni, S.K. & Mousa, S.A. 2018. Thymoquinone attenuates cardiomyopathy in streptozotocin-treated diabetic rats. Oxidative Medicine and Cellular Longevity 2018: 7845681.

Avery, N.C. & Bailey, A.J. 2006. The effects of the Maillard reaction on the physical properties and cell interactions of collagen. Pathologie-Biologie 54(7): 387-395.

Azevedo, P.S., Polegato, B.F., Minicucci, M.F., Paiva, S.A. & Zornoff, L.A. 2016. Cardiac remodeling: Concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment. Arquivos Brasileiros de Cardiologia 106(1): 62-69.

Bayes-Genis A. 2007. Hypertrophy and inflammation: Too much for one heart. European Heart Journal 28(6): 661-663.

Bayeva, M., Sawicki, K.T. & Ardehali, H. 2013. Taking diabetes to heart - deregulation of myocardial lipid metabolism in diabetic cardiomyopathy. Journal of the American Heart Association 2 :e000433.

Benjamin, M.M. & Khalil, R.A. 2012. Matrix metalloproteinase inhibitors as investigative tools in the pathogenesis and management of vascular disease. Experientia Supplementum 103: 209-279.

Bonnet, F. & Scheen, A. 2017. Understanding and overcoming metformin gastrointestinal intolerance. Diabetes, Obesity and Metabolism 19(4): 473-481.

Budin, S.B., Sharifuddin, N.A., Jubaidi, F.F. & Zainalabidin, S. 2019. The potential of Hibiscus sabdariffa Linn. (Roselle) polyphenol-rich extract as a cardioprotective agent in myocardial infarction model. Jurnal Teknologi 81(5): 25-31.

Cambronero, F., Marín, F., Roldán, V., Hernández-Romero, D., Valdés, M. & Lip, G.Y. 2009. Biomarkers of pathophysiology in hypertrophic cardiomyopathy: Implications for clinical management and prognosis. European Heart Journal 30(2): 139-151.

Chen, X., Liu, G., Zhang, W., Zhang, J., Yan, Y., Dong, W., Liang, E., Zhang, Y. & Zhang, M. 2015. Inhibition of MEF2A prevents hyperglycemia-induced extracellular matrix accumulation by blocking Akt and TGF-β1/Smad activation in cardiac fibroblasts. The International Journal of Biochemistry & Cell Biology 69: 52-61.

Chen, Y.F., Shibu, M.A., Fan, M.J., Chen, M.C., Viswanadha, V.P., Lin, Y.L., Lai, C.H., Lin, K.H., Ho, T.J., Kuo, W.W. & Huang, C.Y. 2016. Purple rice anthocyanin extract protects cardiac function in STZ-induced diabetes rat hearts by inhibiting cardiac hypertrophy and fibrosis. The Journal of Nutritional Biochemistry 31: 98-105.

Chong, S.A., Lee, W., Arora, P.D., Laschinger, C., Young, E.W., Simmons, C.A., Manolson, M., Sodek, J. & McCulloch, C.A. 2007. Methylglyoxal inhibits the binding step of collagen phagocytosis. The Journal of Biological Chemistry 282(11): 8510-8520.

Cohn, J.N., Ferrari, R. & Sharpe, N. 2000. Cardiac remodeling--concepts and clinical implications: A consensus paper from an international forum on cardiac remodeling. Behalf of an international forum on cardiac remodeling. Journal of the American College of Cardiology 35(3): 569-582.

Cowling, R.T., Kupsky, D., Kahn, A.M., Daniels, L.B. & Greenberg, B.H. 2019. Mechanisms of cardiac collagen deposition in experimental models and human disease. Translational Research: The Journal of Laboratory and Clinical Medicine 209: 138-155.

Cox, E.J. & Marsh, S.A. 2014. A systematic review of fetal genes as biomarkers of cardiac hypertrophy in rodent models of diabetes. PloS ONE 9(3): e92903.

D'Arcy, M.S. 2019. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biology International 43(6): 582-592.

de Simone, G., Devereux, R.B., Chinali, M., Lee, E.T., Galloway, J.M., Barac, A., Panza, J.A. & Howard, B.V. 2010. Diabetes and incident heart failure in hypertensive and normotensive participants of the strong heart study. Journal of Hypertension 28(2): 353-360.

Diao, J., Wei, J., Yan, R., Fan, G., Lin, L. & Chen, M. 2019. Effects of resveratrol on regulation on UCP2 and cardiac function in diabetic rats. Journal of Physiology and Biochemistry 75(1): 39-51.

Dillmann, W.H. 2019. Diabetic cardiomyopathy. Circulation Research 124(8): 1160-1162.

Disertori, M., Masè, M. & Ravelli, F. 2017. Myocardial fibrosis predicts ventricular tachyarrhythmias. Trends in Cardiovascular Medicine 27(5): 363-372.

Dos Santos, K.C., Cury, S.S., Ferraz, A., Corrente, J.E., Gonçalves, B.M., de Araújo Machado, L.H., Carvalho, R.F., de Melo Stevanato Nakamune, A.C., Fabro, A.T., Freire, P.P. & Corrêa, C.R. 2018. Recovery of cardiac remodeling and dysmetabolism by pancreatic islet injury improvement in diabetic rats after yacon leaf extract treatment. Oxidative Medicine and Cellular Longevity 2018: 1821359.

Eguchi, K., Boden-Albala, B., Jin, Z., Rundek, T., Sacco, R.L., Homma, S. & Di Tullio, M.R. 2008. Association between diabetes mellitus and left ventricular hypertrophy in a multiethnic population. American Journal of Cardiology 101(12): 1787-1791.

Einarson, T.R., Acs, A., Ludwig, C. & Panton, U.H. 2018. Prevalence of cardiovascular disease in type 2 diabetes: A systematic literature review of scientific evidence from across the world in 2007-2017. Cardiovascular Diabetology 17(1): 83.

EXpert Group on Biomarkers. 2014. Biomarkers in cardiology--part 1--in heart failure and specific cardiomyopathies. Arquivos Brasileiros de Cardiologia 103(6): 451-459.

Falcão-Pires, I. & Leite-Moreira, A.F. 2012. Diabetic cardiomyopathy: Understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Failure Reviews 17(3): 325-344.

Fowlkes, V., Clark, J., Fix, C., Law, B.A., Morales, M.O., Qiao, X., Ako-Asare, K., Goldsmith, J.G., Carver, W., Murray, D.B. & Goldsmith, E.C. 2013. Type II diabetes promotes a myofibroblast phenotype in cardiac fibroblasts. Life Sciences 92(11): 669-676.

Frieler, R.A. & Mortensen, R.M. 2015. Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and remodeling. Circulation 131(11): 1019-1030.

Geraldes, P. & King, G.L. 2010. Activation of protein kinase C isoforms and its impact on diabetic complications. Circulation Research 106(8): 1319-1331.

Gogula, S.V., Divakar, C., Satyanarayana, C., Kumar, Y.P. & Lavanaya, V.S. 2013. Computational investigation of pkcβ inhibitors for the treatment of diabetic retinopathy. Bioinformation 9(20): 1040-1043.

Huang, M.L., Chiang, S., Kalinowski, D.S., Bae, D.H., Sahni, S. & Richardson, D.R. 2019. The role of the antioxidant response in mitochondrial dysfunction in degenerative diseases: Crosstalk between antioxidant defense, autophagy, and apoptosis. Oxidative Medicine and Cellular Longevity 2019: 6392763.

Huynh, K., Bernardo, B.C., Mcmullen, J.R. & Ritchie, R.H. 2014. Diabetic cardiomyopathy: Mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacology & Therapeutics 142(3): 375-415.

Huynh, K., Kiriazis, H., Du, X-J., Love, J.E., Gray, S.P., Jandeleit-Dahm, K.A., Mcmullen, J.R. & Ritchie, R.H. 2013. Targeting the upregulation of reactive oxygen species subsequent to hyperglycemia prevents type 1 diabetic cardiomyopathy in mice. Free Radical Biology and Medicine 60: 307-317.

Izzicupo, P., D'Amico, M.A., Bascelli, A., Di Fonso, A., D'Angelo, E., Di Blasio, A., Bucci, I., Napolitano, G., Gallina, S. & Di Baldassarre. 2013. Walking training affects dehydroepiandrosterone sulfate and inflammation independent of changes in spontaneous physical activity. Menopause 20(4): 455-463.

Jia, G., Hill, M.A. & Sowers, J.R. 2018. Diabetic cardiomyopathy: An update of mechanisms contributing to this clinical entity. Circulation Research 122(4): 624-638.

Jia, G., DeMarco, V.G. & Sowers, J.R. 2016. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nature reviews. Endocrinology 12(3): 144-153.

Joseph, B., Shimojo, G., Li, Z., Thompson-Bonilla, M., Shah, R., Kanashiro, A., Salgado, H.C. & Ulloa, L. 2019. Glucose activates vagal control of hyperglycemia and inflammation in fasted mice. Scientific Reports 9(1): 1012.

Jubaidi, F.F., Zainalabidin, S., Taib, I.S., Hamid, Z.A. & Budin, S.B. 2021. The potential role of flavonoids in ameliorating diabetic cardiomyopathy via alleviation of cardiac oxidative stress, inflammation and apoptosis. International Journal of Molecular Sciences 22(10): 5094.

Kawanami, D., Matoba, K. & Utsunomiya, K. 2016. Signaling pathways in diabetic nephropathy. Histology and Histopathology 31(10): 1059-1067.

Lee, J.K. & Kim, N.J. 2017. Recent advances in the inhibition of p38 MAPK as a potential strategy for the treatment of Alzheimer’s disease. Molecules 22(8): E1287.

Levick, S.P. & Widiapradja, A. 2020. The diabetic cardiac fibroblast: Mechanisms underlying phenotype and function. International Journal of Molecular Sciences 21(3): 970.

Li, L., Luo, W., Qian, Y., Zhu, W., Qian, J., Li, J., Jin, Y., Xu, X. & Liang, G. 2019. Luteolin protects against diabetic cardiomyopathy by inhibiting NF-κB-mediated inflammation and activating the Nrf2-mediated antioxidant responses. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 59: 152774.

Liu, X., Qi, F. & Wu, W. 2014. Effect of intervention in the diacylglycerol‑protein kinase C signaling pathway on JNK1 expression and its downstream signaling in diabetic cardiomyopathy. Molecular Medicine Reports 9(3): 979-984.

Liu, J., Zhuo, X., Liu, W., Wan, Z., Liang, X., Gao, S., Yuan, Z. & Wu, Y. 2015. Resveratrol inhibits high glucose induced collagen upregulation in cardiac fibroblasts through regulating TGF-β1-Smad3 signaling pathway. Chemico-Biological Interactions 227: 45-52.

Liu, Q., Han, Q., Lu, M., Wang, H. & Tang, F. 2019. Lycium barbarum polysaccharide attenuates cardiac hypertrophy, inhibits calpain-1 expression and inhibits NF-κB activation in streptozotocin-induced diabetic rats. Experimental and Therapeutic Medicine 18(1): 509-516.

Malik, S., Suchal, K., Khan, S.I., Bhatia, J., Kishore, K., Dinda, A.K. & Arya, D.S. 2017. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-fibronectin pathways. American Journal of Physiology Renal Physiology 313(2): F414-F422.

Mann, D.L. 2015 Innate immunity and the failing heart: The cytokine hypothesis revisited. Circulation Research 116(7): 1254-1268.

Martufi, G. & Gasser, T.C. 2012. Turnover of fibrillar collagen in soft biological tissue with application to the expansion of abdominal aortic aneurysms. Journal of the Royal Society, Interface 9(77): 3366-3377.

Marwick, T.H., Ritchie, R., Shaw, J.E. & Kaye, D. 2018. Implications of underlying mechanisms for the recognition and management of diabetic cardiomyopathy. Journal of the American College of Cardiology 71(3): 339-351.

Moe, G.W. & Marín-García, J. 2016. Role of cell death in the progression of heart failure. Heart Failure Reviews 21(2): 157-167. 

Mohammed Yusof, N.L., Zainalabidin, S., Mohd Fauzi, N. & Budin, S.B. 2018. Hibiscus sabdariffa (Roselle) polyphenol-rich extract averts cardiac functional and structural abnormalities in type 1 diabetic rats. Applied Physiology, Nutrition, and Metabolism 43: 1224-1232.

NHMS. 2015. Institute for Public Health (IPH). National Health and Morbidity Survey 2015 (NHMS 2015). Vol. II: Non-Communicable Diseases, Risk Factors & Other Health Problems.

Oka, T. & Komuro, I. 2008. Molecular mechanisms underlying the transition of cardiac hypertrophy to heart failure. Circulation Journal 72(SupplementA): A13-A16.

Othman, A.I., El-Sawi, M.R., El-Missiry, M.A. & Abukhalil, M.H. 2017. Epigallocatechin-3- gallate protects against diabetic cardiomyopathy through modulating the cardio- metabolic risk factors, oxidative stress, inflammation, cell death and fibrosis in streptozotocin-nicotinamide-induced diabetic rats. Biomedicine and Pharmacotherapy 94: 362-373.

Paolillo, S., Marsico, F., Prastaro, M., Renga, F., Esposito, L. & De Martino, F. 2019. Diabetic cardiomyopathy: Definition, diagnosis, and therapeutic implications. Heart Failure Clinics 15: 341-347.

Paulus, W.J. & Dal Canto, E. 2018. Distinct myocardial targets for diabetes therapy in heart failure with preserved or reduced ejection fraction. JACC Heart Failure 6: 1-7.

Prabhu, S.D. & Frangogiannis, N.G. 2016. The biological basis for cardiac repair after myocardial infarction: From inflammation to fibrosis. Circulation Research 119(1): 91-112.

Rajesh, M., Mukhopadhyay, P., Bátkai, S., Patel, V., Saito, K., Matsumoto, S., Kashiwaya, Y., Horváth, B., Mukhopadhyay, B. & Becker, L. 2010. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy. Journal of the American College of Cardiology 56: 2115-2125.

Rienks, M., Papageorgiou, A.P., Frangogiannis, N.G. & Heymans, S. 2014. Myocardial extracellular matrix: An ever-changing and diverse entity. Circulation Research 114(5): 872-888.

Ritchie, R.H., Irvine, J.C., Rosenkranz, A.C., Patel, R., Wendt, I.R., Horowitz, J.D. & Kemp-Harper, B.K. 2009. Exploiting cGMP-based therapies for the prevention of left ventricular hypertrophy: NO* and beyond. Pharmacology & Therapeutics 124(3): 279-300.

Ritchie, R.H. & Abel, E.D. 2020. Basic mechanisms of diabetic heart disease. Circulation Research 126(11): 1501-1525.

Ruan, Y., Jin, Q., Zeng, J., Ren, F., Xie, Z., Ji, K., Wu, L., Wu, J. & Li, L. 2020. Grape seed proanthocyanidin extract ameliorates cardiac remodelling after myocardial infarction through PI3K/AKT pathway in mice. Frontiers in Pharmacology 11: 585984. 

Schubert, M., Hansen, S., Leefmann, J. & Guan, K. 2020. Repurposing antidiabetic drugs for cardiovascular disease. Frontiers in Physiology 11: 568632.

Sedgwick, B., Riches, K., Bageghni, S.A., O'Regan, D.J., Porter, K.E. & Turner, N.A. 2014. Investigating inherent functional differences between human cardiac fibroblasts cultured from nondiabetic and Type 2 diabetic donors. Cardiovascular Pathology: The Official Journal of the Society for Cardiovascular Pathology 23(4): 204-210.

Seferovic, P.M. & Paulus, W.J. 2015. Clinical diabetic cardio- myopathy: A two-faced disease with restrictive and dilated phenotypes. European Heart Journal 36(27): 1718-1727.

Singh, R.M., Cummings, E., Pantos, C. & Singh, J. 2017. Protein kinase C and cardiac dysfunction: A review. Heart Failure Reviews 22(6): 843-859.

Soetikno, V., Sari, F.R., Sukumaran, V., Lakshmanan, A.P., Mito, S., Harima, M., Thandavarayan, R.A., Suzuki, K., Nagata, M. & Takagi, R. 2012. Curcumin prevents diabetic cardiomyopathy in streptozotocin-induced diabetic rats: Possible involvement of PkcMapk signaling pathway. European Journal of Pharmaceutical Sciences 47(3): 604-614.

Sun, L., Yu, M., Zhou, T., Zhang, S., He, G., Wang, G. & Gang, X. 2019. Current advances in the study of diabetic cardiomyopathy: From clinicopathological features to molecular therapeutics (Review). Molecular Medicine Reports 20(3): 2051-2062.

Tate, M., Deo, M., Cao, A.H., Hood, S.G., Huynh, K., Kiriazis, H., Du, X.J., Julius, T.L., Figtree, G.A., Dusting, G.J., Kaye, D.M. & Ritchie, R.H. 2017. Insulin replacement limits progression of diabetic cardiomyopathy in the low-dose streptozotocin-induced diabetic rat. Diabetes and Vascular Disease Research 14(5): 423-433.

van Empel, V.P. & De Windt, L.J. 2004. Myocyte hypertrophy and apoptosis: A balancing act. Cardiovascular Research 63(3): 487-499.

Volpe, C., Villar-Delfino, P.H., Dos Anjos, P. & Nogueira-Machado, J.A. 2018. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death & Disease 9(2): 119.

Wang, Y., Zheng, X., Li, L., Wang, H., Chen, K., Xu, M., Wu, Y., Huang, X., Zhang, M., Ye, X., Xu, T., Chen, R. & Zhu, Y. 2020. Cyclocarya paliurus ethanol leaf extracts protect against diabetic cardiomyopathy in db/db mice via regulating PI3K/Akt/NF-κB signaling. Food & Nutrition Research 64: 10.29219/fnr.v64.4267. 

Wu, W., Liu, X. & Han, L. 2019. Apoptosis of cardiomyocytes in diabetic cardiomyopathy involves overexpression of glycogen synthase kinase-3β. Bioscience Reports 39(1): BSR20171307.

Wu, X., Huang, L., Zhou, X. & Liu, J. 2020. Curcumin protects cardiomyopathy damage through inhibiting the production of reactive oxygen species in Type 2 diabetic mice. Biochemical and Biophysical Research Communications 530(1): 15-21.

Yamazaki, K.G., Gonzalez, E. & Zambon, A.C. 2012. Crosstalk between the renin-angiotensin system and the advance glycation end product axis in the heart: role of the cardiac fibroblast. Journal of Cardiovascular Translational Research 5(6): 805-813.

Yan, R., Shan, H., Lin, L., Zhang, M., Diao, J-Y., Li, Q., Liu, X. & Wei, J. 2016. Chronic resveratrol treatment improves cardiac function in a rat model of diabetic cardiomyopathy via attenuation of mitochondrial injury and myocardial apoptosis. International Journal of Clinical and Experimental Medicine 9(11): 21156-21167. 

Yusof, N.L.M., Affendi, T.N.T.T., Jubaidi, F.F., Zainalabidin, S. & Budin, S.B. 2020. Hibiscus sabdariffa Linn. (Roselle) polyphenols-rich extract prevents hyperglycemia-induced cardiac oxidative stress and mitochondrial damage in diabetic rats. Sains Malaysiana 49(10): 2499-2506.

Zhang, Y., Pizzute, T. & Pei, M. 2014. A review of crosstalk between MAPK and Wnt signals and its impact on cartilage regeneration. Cell and Tissue Research 358(3): 633-649.

Zhang, L., Mao, Y., Pan, J., Wang, S., Chen, L. & Xiang, J. 2017. Bamboo leaf extract ameliorates cardiac fibrosis possibly via alleviating inflammation, oxidative stress and apoptosis. Biomedicine & Pharmacotherapy 95: 808-817. 

Zhang, J., Qiu, H., Huang, J., Ding, S., Huang, B., Wu, Q. & Jiang, Q. 2018. Naringenin exhibits the protective effect on cardiac hypertrophy via EETs-PPARs activation in streptozocin-induced diabetic mice. Biochemical and Biophysical Research Communications 502(1): 55-61. 

Zhao, Q., Jia, T.Z., Cao, Q.C., Tian, F. & Ying, W.T. 2018. A crude 1-DNJ extract from home made Bombyx batryticatus inhibits diabetic cardiomyopathy-Associated fibrosis in db/db mice and reduces protein N-Glycosylation levels. International Journal of Molecular Sciences 19(6): 1699.

 

*Pengarang untuk surat-menyurat; email: balkis@ukm.edu.my

 

 

 

 

   

sebelumnya