Sains Malaysiana 51(12)(2022):
4161-4173
http://doi.org/10.17576/jsm-2022-5112-23
Factors
Affecting Housing Price in Malaysia Using Structural Equation Modeling
Approach
(Faktor Mempengaruhi Harga Rumah di Malaysia menggunakan Pendekatan Model Berstruktur Persamaan)
NORANI
AMIT1,3,*, HASIMAH SAPIRI1 & ZAHAYU MD YUSOF1,2
1School of Quantitative Sciences, Universiti Utara Malaysia, 06010 Sintok,
Kedah Darul Aman, Malaysia
2Institute of Strategic Industrial Decision Modelling, School of
Quantitative Sciences, Universiti Utara Malaysia,
06010 Sintok, Kedah Darul Aman, Malaysia
3Faculty of Computer and Mathematical
Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, 73000 Kampus Seremban, Negeri Sembilan, Malaysia
Diserahkan: 5 Mei 2022/Diterima:
6 September 2022
Abstract
House buyers are primarily concerned with house
prices, on top of other aspects such as housing preferences, and housing
financial. In Malaysia, the problem regarding housing issue is one that is
regularly spoken due to sharp rise in housing prices which made that most
houses are no longer affordable for most Malaysians. Thus, this study aims to identify the key
factors influencing the price of houses in Malaysia. Data was collected by
distributing a survey questionnaire to 245 respondents throughout the country.
The data was then analyzed using the structural
equation modelling (SEM) analysis via the IBM AMOS statistical software. The
study instrument was evaluated using the exploratory factor analysis and
confirmatory factor analysis techniques. The theoretical model was developed
using the SEM technique. The findings derived are hoped to benefit
policymakers, developers, urban planners, and contractors in developing
strategies for materializing affordable house prices for homebuyers in
Malaysia.
Keywords: Factor analysis; homebuyer; housing
affordability; housing prices; structural equation modeling
Abstrak
Pembeli rumah amat mementingkan
harga rumah selain aspek lain seperti pemilihan perumahan dan kewangan perumahan. Di Malaysia, masalah berkenaan perumahan seringkali diperkatakan berikutan kenaikan mendadak harga rumah yang menyebabkan
kebanyakan rumah tidak lagi mampu dimiliki oleh kebanyakan rakyat Malaysia. Justeru,
kajian ini bertujuan untuk mengenal pasti faktor utama yang mempengaruhi
harga rumah di Malaysia. Data dikumpul dengan mengedarkan borang soal selidik
kepada 245 responden di seluruh negara. Data tersebut kemudiannya dianalisis
menggunakan analisis pemodelan berstruktur persamaan (SEM) melalui perisian
statistik IBM AMOS. Instrumen kajian dinilai menggunakan teknik analisis faktor
jelajah dan analisis faktor pengesahan. Model teori telah dibangunkan
menggunakan teknik SEM. Penemuan yang diperoleh diharap dapat memberi manfaat
kepada penggubal dasar, pemaju, perancang bandar dan kontraktor dalam
membangunkan strategi untuk merealisasikan harga rumah mampu milik untuk
pembeli rumah di Malaysia.
Kata kunci: Analisis faktor; harga rumah; pembeli rumah; pemodelan
berstruktur persamaan; perumahan mampu milik
RUJUKAN
Abu, A.,
Hamdan, R. & Sani, N.S. 2020. Ensemble learning for multidimensional
poverty classification. Sains Malaysiana 49(2):
447-459.
Anderson,
T.W. & Rubin, H. 1956. Statistical inference in factor analysis. Proceedings
of the Third Berkeley Symposium on Mathematical Statistics and Probability.
pp. 111-150.
Arbuckle,
J.L. 2013. Amos 22 User Guide. Amos Development Corporation.
Awang,
Z. 2012. A Handbook on SEM Structural Equation Modelling: SEM using
AMOS Graphic. 5th ed. Kota Bharu: Universiti Teknologi MARA Kelantan.
Awang,
Z., Lim, S.H. & Zainudin, N.F.S. 2018. Pendekatan Mudah SEM-structural Equation Modelling. Bandar Baru Bangi: MPWS Rich Resources.
Babakus, E. & Mangold, W.G. 1992. Adapting the
SERVQUAL scale to hospital services: An empirical investigation. Health
Services Research 26(6): 767.
Bakar,
A.A., Osman, M.M., Bachok, S. & Ibrahim, M. 2016.
Investigating rationales of Malaysia quality of life and wellbeing components
and indicators. Procedia-Social and Behavioral Sciences 222: 132-142.
Bakhtyar, B., Zaharim, A., Sopian, K. & Monghimi, S.
2013. Housing for poor people: A review on low-cost housing process in
Malaysia. WSEAS. Trans. Environ. Dev. 9: 126-136.
Bank
Negara Malaysia. 2017. Imbalances in the property market. Box Article
in 3rd Quarterly Bulletin.
Bian, H. 2011. Structural Equation Modelling with
AMOS II.
Bryman,
A. & Bell, E. 2007. Business
Research Method. Oxford: Oxford University Press.
Bajpai,
N. 2011. Business Research Method. Delhi: Pearson Education India.
Bentler, P.M. 1990. Comparatives fit indexes in structural
models. Psychological Bulletin 107: 238-246.
Byrne,
B.M. 2001. Structural Equations Modeling with
AMOS: Basic Concepts, Applications, and Programming. New Jersey: Lawrence
Erlbaum Associates.
Chau,
P.Y.K. & Hu, P.J.H. 2001. Information technology acceptance by individual
professionals: A model comparison approach. Decision Sciences 32(4):
699-719.
Chen,
P.F., Chien, M.S. & Lee, C.C. 2011. Dynamic modeling of regional house price diffusion in Taiwan. Journal
of Housing Economics 20(4): 315-332.
Daud,
N.M., Nor, N.M., Ali, U.N., Yusof, M.A. & Munikanan,
V. 2017. Affordable housing system: A review on issue of housing
affordability. The Social Sciences 12(7): 1281-1287.
Deng,
C., Ma, Y. & Chiang, Y.M. 2009. The dynamic behavior of Chinese housing prices. International Real Estate Review 12(2):
121-134.
Ehido, A., Awang, Z., Halim, B.A. & Ibeabuchi, C.
2020. Developing items for measuring quality of worklife among Malaysian academics: An exploratory factor analysis procedure. Humanities
and Social Sciences Reviews 8(3): 1295-1309.
Etikan, I., Musa, S.A. & Alkassim,
R.S. 2015. Comparison of convenience sampling and purposive sampling. American
Journal of Theoretical and Applied Statistics 5(1): 1-4.
Groenland, E.A. & Stalpers, J.
2012. Structural equation modeling: A verbal
approach. Nyenrode research paper series, Breukelen, The Netherlands: Nyenrode Business Universiteit 12(2).
Hair,
J.F., Black, W.C., Babin, B.J. & Anderson, R.E.
2010. Multivariate Data Analysis: Overview of Multivariate Methods. Seventh Edition. Pearson Prentice Hall: Upper Saddle River, New Jersey: Pearson
Education International.
Hair,
J.F., Anderson, R.E., Tatham, R.L. & Black, W.C. 1995. Multivariate Data
Analysis with Readings. 4th ed. New Jersey: Englewood Cliffs.
Hassan,
G.F. 2011. The enabling approach for housing supply: Drawbacks prerequisites
Egyptian experiences. Alexandria Eng. J. 50: 421-429.
Ismail,
S. 2019. Rethinking Housing: Between State, Market and Society. Kuala
Lumpur: Khazanah Research Institute.
Kim,
J.O. & Mueller, C.W. 1978. Factor Analysis: Statistical Methods and
Practical Issues. California: SAGE
Publications.
Latif, N.S.A., Rizwan, K.M., Rozzani, N. & Saleh, S.K. 2020. Factors affecting
housing prices in Malaysia: A literature review. International Journal
of Asian Social Science 10(1): 63-67.
Loehlin, J.C. 2004. Latent Variable Models: An
Introduction to Factor, Path, and Structural Equation Analysis. 4th ed. New
Jersey: Lawrence Erlbaum Associates.
Marton-Williams, J. 1986. Questionnaire design. In Consumer
Market Research Handbook, edited by Worcester, R. & Downham, J.
New York: McGraw-Hill.
Meyers, L.S., Gamst,
G.C. & Guarino, A.J. 2005. Applied Multivariate Research: Design and
Interpretation. Thousand Oaks: Sage Publications.
Monkkonen, P., Wong, K. & Begley, J.
2012. Economic restructuring, urban growth, and short-term trading: The spatial
dynamics of the Hong Kong housing market, 1992-2008. Regional Science and
Urban Economics 42: 396-406.
Nayeri, M.D. & Rostami, M. 2018.
Tehran housing price analysis: System dynamics approach. European Institute for
Research and Development. 3rd
International Academic Conference on Economics, Business and Social Science
"Contemporary Academic Issues in Modern Societyā€¯.
Nunnally, J.C. 1978. An overview of
psychological measurement. In Clinical
Diagnosis of Mental Disorders: A Handbook, edited by Wohnan,
B.B. Boston: Springer. pp. 97-146.
Osmadi, A., Kamal, E.M., Hassan, H. &
Fattah, H.A. 2015. Exploring the elements of housing price in Malaysia. Asian
Social Science 11(24): 26.
Ramayah, T., Lee, J.W.C. & Mohamad, O. 2010. Green
product purchase intention: Some insights from a developing country. Resource Conversation and Recycling 54(12): 1419-1427. doi:
http://dx.doi.org/10.1016/j.resconrec.2010.06.007
Razak,
F.A. & Shahabuddin, F.A. 2018. Malaysian household income distribution: A
fractal point of view. Sains Malaysiana 47(9):
2187-2194.
Sarkam, N.A., Razi, N.F.M., Mohammad, N.H., Jamil, N.I.
& Kurniawati, L. 2022. Attitudes, security, and
perceived ease of use influence the consumers' decision to use an e-payment
system. System 12(3): 357-368.
Schumacker, R.E. & Lomax, R.G. 2004. A Beginner's
Guide to Structural Equation Modeling, 2nd ed., edited by Riegert, D.
New Jersey: Lawrence Erlbaum Associates.
Sean,
S.L. & Hong, T.T. 2014. Factors affecting the purchase decision of
investors in the residential property market in Malaysia. Journal of
Surveying, Construction and Property 5(2): 1-13.
Tanguma, J. 2001. Effects of sample size on the
distribution of selected fit indices: A graphical approach. Educational and
Psychological Measurement 61(5): 759-776.
Yahaya,
T., Idris, K., Suandi, T. & Ismail, I. 2018.
Adapting instruments and modifying statements: The confirmation method for the
inventory and model for information sharing behavior using social media. Management Science Letters 8(5): 271-282.
Zainol, Z. 2018. Structural
Equation Modeling Using AMOS: A Step by Step
Approach.ISBN:
978-967-16417-0-5
Zairul, M. 2013. Housing dilemma among young starters in
Malaysia. Elixir Sustain 58: 14923-14926.
Zyed, Z.A.S. 2014. Assessment of housing
affordability problems among younger working households in greater Kuala
Lumpur. PhD dissertation. University of Malaya (Unpublished).
*Pengarang untuk surat-menyurat; email: norani@uitm.edu.my
|