Sains Malaysiana 51(2)(2022): 473-483
http://doi.org/10.17576/jsm-2022-5102-12
Growth
and Quality of Hydroponic Cultivated Spinach (Spinacia oleracea L.) Affected by the Light Intensity of Red and
Blue LEDs
(Pertumbuhan dan Kualiti Bayam (Spinacia oleracea L.) yang Dipengaruhi
oleh Keamatan Cahaya Lampu LED Biru dan Merah
THI-PHUONG-DUNG NGUYEN1,
NGOC-THANG VU1, QUANG-THACH NGUYEN3, THI-THANH-HUYEN TRAN2,
PHI-BANG CAO4, IL-SEOP KIM5 & DONG-CHEOL JANG5*
1Faculty of Agronomy, Vietnam National University
of Agriculture, Hanoi, Vietnam
2Faculty of Biology, Hanoi National University of Education, Hanoi,
Vietnam
3Institute of Agrobiology, Vietnam National University of
Agriculture, Hanoi, Vietnam
4Department of Natural Sciences, Hung Vuong University, Phu
Tho, Vietnam
5Department of Horticulture, Kangwon National University, Chuncheon
200-701, Korea
Diserahkan: 1 Disember 2020/Diterima:
15 Julai 2021
ABSTRACT
This study aimed to evaluate the
effect of four light intensities (90, 140, 190 and 240 µmol m-2 s-1)
provided by red-blue LED light (spectrum ratio: R660/B450 = 4/1) on the growth
and quality of hydroponic cultivated spinach. The results showed that when the
light intensity increased, plant height, leaf number, root length, leaf width,
shoot fresh weight, shoot dry weight, root fresh weight and root dry weight
were increased but specific leaf weight and shoot-to-root ratio did not increase.
The highest values of growth parameters were observed under 190 µmol m-2 s-1 treatment, while the lowest values were observed under 90 µmol m-2 s-1 treatment. At higher light intensities, K+, oxalic
acid and nitrate contents tended to decrease but not Ca2+ content.
Meanwhile, the highest values of Fe2+, crude fiber, soluble-solids,
total polyphenol and vitamin C contents were observed under 190 µmol m-2 s-1 treatment, but 190 µmol m-2 s-1 treatment
showed the lowest organic acid content. Our results indicated that among all
experimental lighting treatments, 190 µmol m-2 s-1 light
intensity showed the best effect on the growth and quality of hydroponic
cultivated spinach.
Keywords:
Growth; LEDs; light intensity; quality; spinach
ABSTRAK
Kajian ini bertujuan untuk menilai
kesan empat keamatan cahaya (90, 140, 190 dan 240 µmol m-2 s-1)
yang disediakan oleh lampu LED merah-biru (nisbah spektrum: R660/B450 = 4/1)
terhadap pertumbuhan dan kualiti bayam hidroponik. Hasil kajian menunjukkan
bahawa ketika keamatan cahaya meningkat, kepanjangan tanaman, jumlah daun,
panjang akar, lebar daun, berat segar pucuk, berat kering pucuk, berat segar
akar dan berat kering akar meningkat tetapi berat daun khusus dan nisbah
pucuk:akar tidak meningkat. Nilai tertinggi parameter pertumbuhan diperhatikan
di bawah perlakuan 190 µmol m-2 s-1, sementara nilai
terendah diperhatikan di bawah rawatan 90 µmol m-2 s-1.
Pada keamatan cahaya yang lebih tinggi, kandungan K+, asid oksalik
dan nitrat cenderung untuk menurun tetapi tidak bagi kandungan Ca2+.
Sementara itu, nilai tertinggi Fe2+, serat kasar, zat terlarut,
jumlah polifenol dan vitamin C diperhatikan di bawah rawatan 190 µmol m-2 s-1, tetapi rawatan 190 µmol m-2 s-1 menunjukkan
kandungan asid organik terendah. Hasil kajian kami menunjukkan bahawa antara
semua rawatan pencahayaan, keamatan cahaya 190 µmol m-2 s-1 menunjukkan
kesan terbaik terhadap pertumbuhan dan kualiti bayam hidroponik.
Kata kunci: Bayam; keamatan cahaya;
kualiti; LED; pertumbuhan
RUJUKAN
Antia,
B.S., Akpan, E.J., Okon, P.A. & Umoren, I.U. 2006. Nutritive and
anti-nutritive evaluation of sweet potatoes (Ipomoea batatas) leaves. Pakistan
Journal of Nutrition 5(2): 166-168.
Atkinson,
D. 1990. Influence of root system morphology and development on the need for
fertilizers and the efficiency of use. In Crops
as Enhancers of Nutrient Use, edited by Duncan, R.R. & Baligar, V.C.
London: Academic Press. pp. 411-451.
Bian, Z., Yang, Q., Li, T., Cheng,
R., Barnett, Y. & Lu, C. 2018. Study of the beneficial effects of green
light on lettuce grown under short‐term continuous red and blue light‐emitting diodes. Physiologia
Plantarum 164(2): 226-240.
Bian, Z.H., Yang, Q.C. & Liu,
W.K. 2015. Effects of light quality on the accumulation of phytochemicals in
vegetables produced in controlled environments: A review. Journal of the Science of Food and Agriculture 95(5): 869-877.
Bula, R.J., Morrow, R.C., Tibbitts,
T.W., Barta, D.J., Ignatius, R.W. & Martin, T.S. 1991. Light-emitting
diodes as a radiation source for plants. HortScience 26(2): 203-205.
Chen, X.L., Guo, W.Z., Xue, X.Z.,
Wang, L.C. & Qiao, X.J. 2014. Growth and quality responses of ‘Green Oak
Leaf’ lettuce as affected by monochromic or mixed radiation provided by
fluorescent lamp (FL) and light-emitting diode (LED). Scientia Horticulturae 172: 168-175.
Dapoigny, L., Tourdonnet, S.D.,
Roger-Estrade, J., Jeuffroy, M.H. & Fleuryr, A. 2000. Effect of nitrogen
nutrition on growth and nitrate accumulation in lettuce (Lactuca sativa L.) under various conditions of radiation and
temperature. Agronomie 20(8):
843-855.
Dorais, M., Ehret, D.L. & Papadopoulos, A.P. 2008. Tomato (Solanum lycopersicum) health components:
From the seed to the consumer. Phytochemistry
Reviews 7: 231-250.
Fu, Y.M., Li, H., Yu, J., Liu, H.,
Cao, Z., Manukovsky, N.S. & Liu, H. 2017. Interaction effects of light
intensity and nitrogen concentration on growth, photosynthetic characteristics
and quality of lettuce (Lactuca sativa L. var. youmaicai). Scientia
Horticulturae 214: 51-57.
Furuyama, S., Ishigami, Y., Hikosaka
S. & Goto, E. 2014. Effects of blue/red ratio and light intensity on
photomorphogenesis and photosynthesis of red leaf lettuce. Acta Horticulture 1037: 317-322.
Gahler,
S., Otto, K. & Böhm, V. 2003. Alterations of vitamin C, total phenolics,
and antioxidant capacity as affected by processing tomatoes to different
products. Journal of Agricultural and Food Chemistry 51(27):
7962-7968.
Gaudreau, L., Charbonneau, J.,
Vezina, L.P. & Gosselin, A. 1995. Effects of photoperiod and photosynthetic
photon flux on nitrate content and nitrate reductase activity in greenhouse
grown lettuce. Journal of Plant Nutrition 18(3): 437-453.
Gerovac, J.R., Craver, J.K., Boldt,
J.K. & Lopez R.G. 2016. Light intensity and quality from sole-source
light-emitting diodes impact growth, morphology, and nutrient content of Brassica microgreens. HortScience 51(5): 497-503.
Goins, G.D., Yorio, N.C., Sanwo,
M.M. & Brown, C.S. 1997. Photomorphogenesis, photosynthesis, and seed yield
of wheat plants grown under red light-emitting diodes (LEDs) with and without
supplemental blue lighting. Journal of
Experimental Botany 48(7): 1407-1413.
Graamans, L., Baeza, E.,
Dobbelsteen, A.V.D., Tsafaras, I. & Stanghellini, C. 2018. Plant factories
versus greenhouses: Comparison of resource use efficiency. Agricultural Systems 160: 31-43.
Gruda, N. 2005. Impact of
environmental variables on product quality of greenhouse vegetables for fresh
consumption. Critical Reviews in Plant
Science 24(3): 227-247.
Grygoray, E.E., Tabalenkova, G.N., Dalke, I.V.
& Golovko, T.K. 2015. Mineral nutrition and productivity of the
greenhouse cucumber crop depending on lighting. Agrokhimiya 4: 74-79.
Hoagland, D.R. & Arnon, D.I.
1950. The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station 347(2): 1-32.
Hogewoning,
S.W., Trouwborst, G., Maljaars, H., Poorter, H., Ieperen, W.V. & Harbinson,
J. 2010. Blue light dose-responses of leaf photosynthesis, morphology, and
chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of Experimental Botany 61(11): 3107-3117.
Horwitz,
W. 1980. Official Methods of Analysis of
the Association of Official Analytical Chemists. Washington: Association of
Official Analytical Chemists.
Jiao, Y., Lau, O.S. & Deng, X.W.
2007. Light-regulated transcriptional networks in higher plants. Nature Review Genetics 8: 217-230.
Johkan, M., Shoji, K., Goto, F.,
Hahida, S. & Yoshihara, T. 2012. Effect of green light wavelength and
intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environmental
and Experimental Botany 75: 128-133.
Kazuo, Y. & Nobutoshi, S. 1998.
Effect of temperature and light intensity on the growth and flowering of
Odontoglossum intergeneric hybrids. Journal
of the Japanese Society of Horticulture Science 67(4): 619-625.
Ko, S.H., Park, J.H., Kim, S.Y.,
Lee, S.W., Chun, S.S. & Park, E. 2014. Antioxidant effects of spinach (Spinacia oleracea L.) supplementation in
hyperlipidemic rats. Preventive Nutrition
and Food Science 19(1): 19-26.
Kozai, T. 2018. Current status of
plant factories with artificial lighting (PFALs) and smart PFALs. In Smart Plant Factory, edited by Kozai, T.
Singapore: Springer. pp. 3-14.
Kumar, N. & Goel, N. 2019.
Phenolic acids: Natural versatile molecules with promising therapeutic
applications. Biotechnology Reports 24: 1-10.
Lichtenthaler,
H.K., Marek, M.V., Kalina, J. & Urban, O. 2007. Differences in pigment
composition, photosynthetic rates and chlorophyll fluorescence images of
sun and shade leaves of four tree species. Plant
Physiology and Biochemistry 45(8): 577-588.
Lillo, C. 1994. Light regulation of
nitrate reductase in green leaves of higher plants. Physiologia Plantarum 90(3): 616-620.
Loewus, F.A. 1999. Biosynthesis and
metabolism of ascorbic acid in plants and of analogs of ascorbic acid in fungi. Phytochemistry 52(2): 193-210.
Lu, N. & Shimamura, S. 2018.
Protocols, issues and potential improvements of current cultivation systems. In Smart Plant Factory, edited by Kozai,
T. Singapore: Springer. pp. 31-49.
McNellis,
T.W. & Deng, X.W. 1995. Light control of seedling morphogenetic pattern. The Plant Cell 7(11): 1749-1761.
Miyagi, A., Uchimiya, H. &
Kawai-Yamada, M. 2017. Synergistic effects of light quality, carbon dioxide and
nutrients on metabolite compositions of head lettuce under artificial growth
conditions mimicking a plant factory. Food
Chemistry 218: 561-568.
Poiroux-Gonord, F., Bidel, L.P.R.,
Fanciullino, A.L., Gautier, H., Lauri-Lopez, F. & Urban, L. 2010. Health
benefits of vitamins and secondary metabolites of fruits and vegetables and
prospects to increase their concentrations by agronomic approaches. Journal of Agriculture and Food Chemistry 58(23): 12065-12082.
Proietti, S., Moscatello, S.,
Giacomelli, G.A. & Battistelli, A. 2013. Influence of the interaction
between light intensity and CO2 concentration on productivity and
quality of spinach (Spinacia oleracea L.) grown in fully controlled environment. Advances
in Space Research 52(6): 1193-1200.
Proietti, S., Moscatello, S.,
Leccese, A., Colla, G. & Battistelli, A. 2004. The effect of growing
spinach (Spinacia oleracea L.) at two
light intensities on the amounts of oxalate, ascorbate and nitrate in their
leaves. The Journal of Horticultural
Science and Biotechnology 79(4): 606-609.
Rajashekar, C., Carey, E.E., Zhao,
X. & Oh, M.M. 2009. Health-promoting phytochemicals in fruits and
vegetables: Impact of abiotic stresses and crop production practices. Functional Plant Science and Biotechnology 3(1): 30-38.
Rasmusson,
D.C. & Gengenbach, B.G. 1984. Genetics and use of physiological variability
in crop breeding. In Physiological Basis
of Crop Growth and Development, edited by Tesar, M.B. Madison: American
Society of Agronomy and Crop Science Society of America. pp. 291-321.
Rout,
G.R. & Sahoo, S. 2015. Role of iron in plant growth and metabolism. Reviews in Agricultural Science 3: 1-24.
Rosales, M.A., Cervilla, L.M.,
Sanchez-Rodrıguez, E., Rubio-Wilhelmi, M.M., Blasco, B., Rios, J.J.,
Soriano, T., Castilla, N., Romero, L. & Ruiz, J.M. 2011. The effect of
environmental conditions on nutritional quality of cherry tomato fruits: Evaluation
of two experimental Mediterranean greenhouses. Journal of the Science of Food and Agriculture 91(1): 152-162.
Sanui,
H. 1971. Activated oxygen ashing of biological specimens for the
microdetermination of Na, K, Mg, and Ca by atomic absorption spectrophotometry. Analytical Biochemistry 42(1): 21-28.
Scaife, A. & Schloemer, S. 1994.
The diurnal pattern of nitrate uptake and reduction by spinach (Spinacia oleracea L.). Annals of Botany 73(3): 337-343.
Shinn,
M.B. 1941. Colorimetric method for determination of nitrate. Industrial and Engineering Chemistry
Analytical Edition 13(1): 33-35.
Singleton,
V.L. & Rossi, J.A. 1965. Colorimetry of total phenolics with
phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16(3): 144-158.
Son, K.H. & Oh, M.M. 2013. Leaf
shape, growth, and antioxidant phenolic compounds of two lettuce cultivars
grown under various combinations of blue and red light-emitting diodes. HortScience 48(8): 988-995.
Terashima, I., Fujita, T., Inoue,
T., Chow, W.S. & Oguchi, R. 2009. Green light drives leaf photosynthesis
more efficiently than red light in strong white light: Revisiting the enigmatic
question of why leaves are green. Plant
and Cell Physiology 50(4): 684-697.
Thor,
K. 2019. Calcium-nutrient and messenger. Frontiers
in Plant Science 10(440): 1-7.
Ülger, T.G., Songur, A.N.,
Çırak, O. & Çakıroğlu, F.P. 2018. Role of vegetables in
human nutrition and disease prevention. In Vegetables:
Importance of Quality Vegetables to Human Health, edited by Asaduzzaman, M.
& Asai, T. London: IntechOpen. pp. 7-32.
Viršilė, A., Olle, M. &
Duchovskis, P. 2017. LED lighting in horticulture. In Light Emitting Diodes for Agriculture, edited by Gupta, S.D.
Singapore: Springer. pp. 113-147.
Wang, J., Lu, W., Tong, Y. & Yang, Q. 2016. Leaf
morphology, photosynthetic performance, chlorophyll fluorescence, stomatal
development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. Frontiers in Plant Science 7(250): 1-10.
Wang, Y., Wang, J., Cheng, W., Zhao,
Z. & Cao, J. 2014. HPLC method for the simultaneous quantification of the
major organic acids in Angeleno plum fruit. IOP
Conference Series: Materials Science and Engineering 62(1): 1-7.
Wang, Y., Alonso, J.M. & Ruan,
X. 2017. High-performance LED drivers. IEEE
Transactions on Industrial Electronics 64(7): 5751-5753.
Zavala,
J.A. & Ravetta, D.A. 2001. Allocation of photoassimilates to biomass, resin
and carbohydrates in Grindelia chiloensis as affected by light intensity. Field
Crops Research 69(2): 143-149.
Zhou, J., Li, P.P., Wang, J.Z. &
Fu, W.G. 2019. Growth, photosynthesis, and nutrient uptake at different light
intensities and temperatures in lettuce. HortScience 54(11): 1925-1933.
*Pengarang
untuk surat-menyurat; email: jdc@kangwon.ac.kr
|