Sains
Malaysiana 51(3)(2022): 895-909
http://doi.org/10.17576/jsm-2022-5103-23
Optimal
Adaptive Neuro-Fuzzy Inference System Architecture for Time Series Forecasting with Calendar Effect
(Seni Bina Sistem Inferens Neuro-Kabur Adaptif Optimum untuk Ramalan Siri Masa dengan Kesan
Kalendar)
PUTRIAJI HENDIKAWATI1,2,*,
SUBANAR1, ABDURAKHMAN1 & TARNO3
1Department
of Mathematics, Gadjah Mada University, Yogyakarta, Indonesia
2Department
of Mathematics, Universitas Negeri Semarang, Semarang, Indonesia
3Department
of Statistics, Universitas Diponegoro, Semarang, Indonesia
Diserahkan: 19 Januari 2021/Diterima: 13 Ogos 2021
Abstract
This paper discusses a procedure for model selection in ANFIS
for time series forecasting with a calendar effect. Calendar effect is different
from the usual trend and seasonal effects. Therefore, when it occurs, it will
affect economic activity during that period and create new patterns that will
result in inaccurate forecasts for decision making if not considered. The focus
is on the model selection strategy to find the appropriate input variable and
the number of membership functions (MFs) based on the Lagrange Multiplier (LM)
test. The ARIMAX stochastic model is used at the preprocessing stage to capture
calendar variations in the data. The calendar effect observed is the Eid
al-Fitr holiday in Indonesia, a country with the largest Muslim population in
the world. The data of Tanjung Priok port passengers used as a case study. The
result shows that hybrid ARIMAX-ANFIS based on the LM test can be an effective
procedure for model selection in ANFIS for time series with calendar effect
forecasting. Empirical results show that the use of the calendar effect
variable provides more accurate predictions as indicated by smaller RMSE and
MAPE values than without the calendar effect variable.
Keywords: ANFIS; ARIMAX; calendar effect; LM test; time series
Abstrak
Kertas ini membincangkan prosedur
pemilihan model ANFIS untuk peramalan siri masa dengan kesan kalendar. Kesan
kalendar berbeza daripada aliran biasa dan kesan bermusim. Oleh itu, apabila ia
berlaku, ia akan menjejaskan aktiviti ekonomi dalam tempoh tersebut dan
mewujudkan corak baharu yang akan mengakibatkan ramalan yang tidak tepat untuk
membuat keputusan jika tidak dipertimbangkan. Fokus adalah pada strategi
pemilihan model untuk mencari pemboleh ubah input
yang sesuai dan bilangan fungsi keahlian (MF) berdasarkan ujian Pengganda Lagrange (LM). Model stokastik ARIMAX
digunakan pada peringkat prapemprosesan untuk mengesan variasi kalendar dalam data. Kesan kalendar
yang diperhatikan ialah cuti Hari Raya Aidilfitri di Indonesia, sebuah negara
dengan penduduk Islam terbesar di dunia. Data penumpang pelabuhan Tanjung Priok
digunakan sebagai kajian kes. Keputusan menunjukkan bahawa ARIMAX-ANFIS hibrid
berdasarkan ujian LM boleh menjadi prosedur yang berkesan untuk pemilihan model
dalam ANFIS dalam siri masa dengan ramalan kesan
kalendar. Keputusan empirik menunjukkan bahawa penggunaan pemboleh ubah kesan
kalendar memberikan ramalan yang lebih tepat seperti yang ditunjukkan oleh
nilai RMSE dan MAPE yang lebih kecil berbanding tanpa pemboleh ubah kesan
kalendar.
Kata kunci: ANFIS; ARIMAX; kesan
kalendar; siri masa; ujian LM
RUJUKAN
Azadeh, A., Saberi, M. &
Asadzadeh, S.M. 2011. An adaptive network based fuzzy inference system-auto regression - Analysis of variance algorithm for
improvement of oil consumption estimation and policy making: The Cases of
Canada, United Kingdom, and South Korea. Applied
Mathematical Modelling 35(2): 581-593.
Box, G.E., Jenkins, G.M., Reinsel,
G.C. & Ljung, G.M. 2015. Time Series Analysis: Forecasting and
Control. New York: John Wiley & Sons.
Cleveland, W.S. & Devlin, S.J.
1982. Calendar effects in monthly time series: Modeling and adjustment. Journal of the American Statistical Association 77(379): 520-528.
Duan, X., Zhang, F., Liao, M., Zou,
J. & Lv, Y. 2019. Forecasting failure risk of transmission line in
ultra-high-voltage networks using ANFIS. Journal
of Intelligent & Fuzzy Systems 37(4): 4827-4836.
Gujarati, D.N. 2009. Basic Econometrics. 4th ed. New York: Tata McGraw-Hill Education.
Gunasekaran, M. & Ramaswami,
K.S. 2014. A hybrid intelligent system of ANFIS and CAPM for stock portfolio
optimization. Journal of Intelligent
& Fuzzy Systems 26(1): 277-286.
Hillmer, S.C. 1982. Forecasting time
series with trading day variation. Journal
of Forecasting 1(4): 385-395.
Jang, J.S.R. 1996. Input Selection
for ANFIS Learning. Proceedings of IEEE
5th International Fuzzy Systems 2: 1493-1499.
Jang, J.S. 1993. ANFIS:
Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics 23(3): 665-685.
Jang, J.S.R., Sun, C.T. &
Mizutani, E. 1997. Neuro-fuzzy and Soft
Computing: A Computational Approach to Learning and Machine Intelligence. New Jersey: Prentice Hall.
Kamisan, N.A.B., Lee, M.H., Suhartono,
S., Hussin, A.G. & Zubairi, Y.Z. 2018. Load forecasting using combination
model of multiple linear regression with neural network for Malaysian City. Sains Malaysiana 47(2): 419-426.
Kling, G. & Gao, L. 2005.
Calendar effects in Chinese Stock Market. Annals of Economics and Finance 6(1):
75-88.
Lee, T.H., White, H. & Granger,
C.W.J. 1993. Testing for neglected nonlinearity in time series models: A
comparison of neural networks methods and alternative test. Journal of Econometrics 56: 269-290.
Lei, K.S. & Wan, F. 2012.
Applying ensemble learning techniques to ANFIS for air pollution index
prediction in Macau. Proceedings of the
9th International Conference on Advances in Neural
Networks, Part 1. pp. 509-516.
Liu, L.M. 1986. Identification of
time series models in the presence of calendar variation. International Journal of Forecasting 2: 357-371.
Liu, L.M. 1980. Note - Analysis of time series with
calendar effects. Management Science 26(1):
106-112.
Liu, X. & Zhou, Z. 2017. A novel
prediction model based on particle swarm optimization and adaptive neuro-fuzzy
inference system. Journal of Intelligent
& Fuzzy Systems 33(5): 3137-3143.
Makridakis, S., Wheelwright, S.C.
& Hyndman, R.J. 1997. Forecasting: Methods and Applications. 3rd ed. New York: Wiley.
Mills, T.C. & Andrew Coutts, J.
1995. Calendar effects in The London Stock Exchange
FT–SE Indices. The European Journal of
Finance 1: 79-93.
Nauck, D. 2000. Data analysis with
neuro-fuzzy method. der Fakultat of Informur der Otto-von-Guericke Universit at
Magdeburg (Unpublished).
Nayak, P.C., Sudheer, K.P., Rangan,
D.M. & Ramasastri, K.S. 2004. A neuro-fuzzy computing technique for
modeling hydrological time series. Journal
of Hydrology 291(1-2): 52-66.
Polat, K. 2012. A novel data
preprocessing method to estimate the air pollution (SO2): Neighbor-Based
Feature Scaling (NBFS). Neural Computing
and Applications 21: 1987-1994.
Prasad, K., Gorai, A.K. & Goyal,
P. 2016. Development of ANFIS Model
for air quality forecasting and input optimization for reducing the
computational cost and time. Atmospheric
Environment 128: 246-262.
Septiarini, T.W. & Musikasuwan,
S. 2018. Investigating the performance
of ANFIS Model to predict the hourly temperature in Pattani, Thailand. Journal of Physics: Conference Series 1097:
012085.
Seyyed, F.J., Abraham, A. &
Al-Hajji, M. 2005. Seasonality in stock returns and volatility: The Ramadan effect. Research in International
Business and Finance 19(3): 374-383.
Sood, S.K., Kaur, S. & Chahal,
K.K. 2020. An intelligent framework for monitoring dengue fever risk using
LDA-ANFIS. Journal of Ambient
Intelligence and Smart Environments Preprint: 1-16.
Suhartono, D.E.A., Prastyo, D.D.,
Kuswanto, H. & Lee, M.H. 2019. Deep neural network for forecasting inflow
and outflow in Indonesia. Sains
Malaysiana 48(8): 1787-1798.
Sullivan, R., Timmermann, A. &
White, H. 2001. Dangers of data mining: The case of
calendar effects in stock returns. Journal
of Econometrics 105(1): 249-286.
Sumithira, T.R. & Nirmal, A.K.
2014. Performance evaluation of standalone solar photovoltaic system using
ANFIS predicted solar radiation: An experimental case study. Journal of Intelligent & Fuzzy Systems 26(1): 203-210.
Tarno, Wilandari, Y., Suparti &
Ispriyanti, D. 2017. Volatility modeling of financial time series data using
ANFIS. Advance Science Letters 23(7):
6562-6566.
Tarno, Subanar & D. Rosadi. 2013. Analysis of financial time series data using Adaptive Neuro Fuzzy Inference System (ANFIS). International Journal of Computer Sciences Issues 10(2): 491-496.
Terasvirta, T., Tjostheim, D. &
Granger, C.W.J. 1994. Aspect modelling nonlinear time series. In Handbook
of Econometrics, edited by Engle, R.F. & Mc Fadden, D.L. Amsterdam, Netherlands: Elsevier
Science B.V.4 Chapter 48: 2919-2957.
Vergin, R.C. & McGinnis, J.
1999. Revisiting the holiday effect: Is it on holiday? Applied Financial Economics 9(5): 477-482.
Wei, L., Chen, T. & Ho, T.
2011. A hybrid model based on
adaptive-network-based fuzzy inference system to forecast Taiwan Stock Market. Expert System with Applications 38(11):
13625-13631.
Yunos, Z.M., Shamsuddin, S.M. &
Sallehuddin, R. 2008. Data modeling
for Kuala Lumpur Composite Index with ANFIS. Second Asia International Conference on Modelling and Simulation. pp. 609-614.
*Pengarang untuk surat-menyurat; email:
putriaji.mat@mail.unnes.ac.id
|