Sains
Malaysiana 50(3)(2022): 929-942
http://doi.org/10.17576/jsm-2021-5103-25
Modeling and Forecasting the Realized Volatility of Bitcoin
using Realized HAR-GARCH-type Models with Jumps and Inverse Leverage Effect
(Memodel dan Meramalkan Kemeruapan Nyata Bitcoin menggunakan Model Nyata Jenis HAR-GARCH dengan Lompatan dan Kesan Tuasan Songsang)
MAMOONA ZAHID1, FARHAT
IQBAL1*, ABDUL RAZIQ1 & NAVEED SHEIKH2
1Department of Statistics, University of Balochistan, Quetta,
Pakistan
2Department of Mathematics, University of Balochistan,
Quetta, Pakistan
Diserahkan: 14 Februari 2021/Diterima: 13 Ogos 2021
ABSTRACT
Using the high-frequency data of
Bitcoin, this study aims to model the time-varying volatility identified in the
residuals of the heterogeneous autoregressive (HAR) model of realized
volatility using the symmetric, asymmetric and long-memory generalized
autoregressive conditional heteroscedastic (GARCH) models. We further
extended these models by incorporating jumps and continuous components in the
realized volatility estimators and investigating the impact of the inverse
leverage effect. The Diebold Mariano and model confidence set test confirm that
the forecasting performance of HAR-type models can be effectively improved by
these innovations. The long memory HAR-GARCH model with jumps and continuous
components provided better forecasting accuracy for Bitcoin volatility as
compared to other realized volatility models. The findings of this study may
benefit individual investors and risk managers who wish to minimize risks and
diversify their portfolios to maximize profits in Bitcoin’s investment.
Keywords: Bitcoin; HAR-GARCH;
high-frequency data; inverse leverage; realized volatility
ABSTRAK
Dengan menggunakan data frekuensi tinggi Bitcoin, kajian ini bertujuan untuk memodelkan kemeruapan berbeza masa yang dikenal pasti dalam residu model autoregresi heterogen (HAR) daripada kemeruapan nyata menggunakan model simetri, asimetri dan memori panjang teritlak autoregresi bersyarat heteroskedastik (GARCH). Model-model ini terus diperluaskan dengan memasukkan lompatan dan komponen berterusan dalam penaksir kemeruapan nyata dan mengkaji kesan tuasan songsang. Diebold Mariano dan model ujian set keyakinan mengesahkan bahawa prestasi ramalan model jenis HAR dapat ditingkatkan dengan berkesan melalui inovasi ini. Model memori panjang HAR-GARCH dengan lompatan dan komponen berterusan memberikan ketepatan ramalan yang lebih baik untuk kemeruapan Bitcoin berbanding model kemeruapan nyata yang lain. Hasil kajian ini dapat memberi manfaat kepada pelabur individu dan pengurus risiko yang ingin meminimumkan risiko dan mempelbagaikan portfolio mereka untuk memaksimumkan keuntungan dalam pelaburan Bitcoin.
Kata kunci: Bitcoin; data frekuensi
tinggi; HAR-GARCH; kemeruapan nyata; tuasan songsang
RUJUKAN
Ahmed, W.M.A. 2020. Is there a
risk-return trade-off in cryptocurrency markets? The case of bitcoin. Journal of Economics and Business 108:
1-21.
Andersen, T.G. & Bollerslev, T.
1998. Answering the skeptics: Yes, standard volatility models do provide
accurate forecasts. International
Economic Review 39(4): 885-905.
Andersen, T.G., Bollerslev, T. &
Diebold, F.X. 2007. Roughing it up: Including jump components in the measurement,
modeling and forecasting of return volatility. The Review of Economics and Statistics 89(4): 701-720.
Andersen, T.G., Bollerslev, T.,
Diebold, F.X. & Labys, P. 2003. Modeling and forecasting realized
volatility. Econometrica 71(2):
579-625.
Ardia, D., Bluteau, K. & Rüede,
M. 2019. Regime changes in Bitcoin GARCH volatility dynamics. Finance Research Letters 29: 266-271.
Baillie, R.T., Bollerslev, T. &
Mikkelsen, H.O. 1996. Fractionally integrated generalized autoregressive
conditional heteroskedasticity. Journal
of Econometrics 74(1): 3-30.
Barndorff‐Nielsen, O.E. &
Shephard, N. 2002a. Econometric analysis of realized volatility and its use in
estimating stochastic volatility models. Journal
of the Royal Statistical Society. Series B (Statistical Methodology) 64(2):
253-280.
Barndorff‐Nielsen, O.E. &
Shephard, N. 2002b. Estimating quadratic variation using realized variance. Journal
of Applied Econometrics 17(5): 457-477.
Bollerslev, T. 1986. Generalized
autoregressive conditional heteroscedasticity. Journal of Econometrics 31(3): 307-327.
Bollerslev, T., Patton, A.J. &
Quaedvlieg, R. 2016. Exploiting the errors: A simple approach for improved
volatility forecasting. Journal of
Econometrics 192(1): 1-18.
Bouri, E., Azzi, G. & Dyhrberg,
A.H. 2017. On the return-volatility relationship in the bitcoin market around
the price crash of 2013. Economics 11:
1- 17.
Bouri, E., Gkillas, K., Gupta, R.
& Pierdzioch, C. 2021. Forecasting relaized volatility of bitcoin: The role
of the trade war. Computational Economics 57(1): 29-53.
Catania, L. & Sandholdt, M.
2019. Bitcoin at high frequency. Journal
of Risk and Financial Management 12(36): 1-20.
Cheong, C.W., Cherng, L.M., Isa,
N.M. & Hoong, P.K. 2017. The HARX-GJR-GARCH skewed-t multipower realized
volatility modelling for S&P 500. Sains
Malaysiana 46(1): 107-116.
Chu, J.S., Chan, S., Nadarajah, S.
& Osterrieder, J. 2017. GARCH modeling of cryptocurrency. Journal of Risk and Financial Management 10(4):
1-15.
Chan, K.F., Gray, P. & Campen,
B.Y. 2008. A new approach to characterizing and forecasting electricity price
volatility. International Journal of
Forecasting 24(4): 728-743.
Corsi, F., Mittnik, S., Pigorsch, C.
& Pigorsch, U. 2008. The volatility of realized volatility. Econometric Review 27(1-3): 46-78.
Corsi, F., Zumbach, G., Muller, U.A.
& Dacorogna, M.M. 2003. Consistent high‐precision volatility from
high‐frequency data. Economic Notes 30(2):
183-204.
Diebold, F.X. & Mariano, R.S.
2002. Comparing predictive accuracy. Journal
of Business & Economic Statistics 20(1): 134-144.
Hansen, P.R., Lunda, A. & Nason,
J.M. 2011. The model confidence test. Econometrica 79(2): 453-497.
Haugom, E. 2011. Some stylized facts
about high-frequency Nord Pool forward electricity prices. Journal of Energy Markets 4(1): 21-49.
Hattori, T. 2020. A forecast
comparison of volatility models using realized volatility: Evidence from the
bitcoin market. Applied Economics Letters 27(7): 591-595.
Hickey, E., Loomis, D.G. &
Mohammadi, H. 2012. Forecasting hourly electricity prices using ARIMAX–GARCH
models: An application to MISO hubs. Energy Economics 34(1): 307-315.
Hung, J.C., Liu, H.C. & Yang,
J.J. 2020. Improving the realized GARCH’s volatility forecast for bitcoin with
jump-robust estimators. The North American
Journal of Economics and Finance 52(101165): 1-11.
Katsiampa, P. 2017. Volatility
estimation for bitcoin: A comparison of GARCH model. Economics Letters 158: 3-6.
Kochling, G., Schmidtke, P. &
Posch, P.N. 2020. Volatility forecasting accuracy for bitcoin. Economics Letters 191(108836): 1-17.
Liu, R., Shao, Z., Wei, G. &
Wang, W. 2017. GARCH model with fat-tailed distributions and bitcoin exchange
rate returns. Journal of Accounting
Business and Finance Research 1(1): 71-75.
Lopez, J.A. 2001. Evaluating the
predictive accuracy of volatility models. Journal
of Forecasting 20(2): 87-109.
Naimy, V.Y. & Hayek, M.R. 2018.
Modelling and predicting the bitcoin volatility using GARCH models. International Journal of Mathematical Modelling and
Numerical Optimisation 8(3): 197-215.
Nelson, D.B. 1991. Conditional
heteroskedasticity in asset returns: A new approach. Econometrica 59(2): 347-370.
Osterrieder, J., Lorenz, J. &
Strika, M. 2017. Bitcoin and cryptocurrencies- not for the faint-hearted. International Finance and Banking 4(1):
56-94.
Qu, H., Chen, W., Niu, M. & Li,
X. 2016. Forecasting realized volatility in electricity markets using logistic
smooth transition heterogeneous autoregressive models. Energy Economics 54:
68-76.
Qu, H., Duan, Q. & Niu, M. 2018.
Modeling the volatility of realized volatility to improve volatility forecasts
in electricity markets. Energy Economics 74: 767-776.
Stavroyiannis, S. & Babalos, V.
2017. Dynamic properties of the Bitcoin and the US market. Social Science Research Network http://dx.doi.org/10.2139/ssrn.2966998.
Urquhart, A. 2017. The volatility of
bitcoin. Social Science Research Network http://dx.doi.org/10.2139/ssrn.2921082.
Yu, M. 2019. Forecasting bitcoin
volatility: The role of leverage effect and uncertainty. Physica A: Statistical
Mechanics and its Applications 553(120707): 1-22.
Zahid, M. & Iqbal, F. 2020.
Modeling the volatility of cryptocurrencies: An empirical application of
stochastic volatility models. Sains
Malaysiana 49(3): 703-712.
Zhang, H. & Lan, Q. 2014.
GARCH-type model with continuous and jump variation for stock volatility and
its empirical study in China. Mathematical
Problems in Engineering (Special Issue: Nonlinear Problems: Mathematical Modeling, Analyzing, and Computing for
Finance). 2014: Article ID. 386721.
*Pengarang untuk surat-menyurat; email: farhatiqb@gmail.com
|