Sains Malaysiana 51(4)(2022): 1061-1074
http://doi.org/10.17576/jsm-2022-5104-09
Assessment of Natural Cellulosic
Powder from Pepper Pericarp Waste (Piper
nigrum L.) after Alkalization and Bleaching Treatment: Effect of Alkali
Concentration and Treatment Cycle
(Penilaian Serbuk Selulosa Semula Jadi daripada Sisa Perikarpa Lada (Piper nigrum L.) selepas Rawatan Alkali dan Pelunturan: Kesan Kepekatan Alkali dan Kitaran Rawatan)
AIN NADIAH SOFIAH AHMAD KHORAIRI1,
NOOR-SOFFALINA SOFIAN-SENG1,2,*, RIZAFIZAH
OTHAMAN3, NOORUL SYUHADA MOHD RAZALI1,2 & KHAIRUL
FARIHAN KASIM4
1Department
of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Innovation
Centre for Confectionery Technology (MANIS), Faculty of Science and Technology
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
3Department
of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
4School of Bioprocess Engineering, Universiti Malaysia Perlis, 01000 Kangar,
Perlis, Malaysia
Diserahkan: 11 Mac 2021/Diterima:
7 September 2021
Abstract
Pepper (Piper nigrum L.) pericarp is an
agriculture waste in the production of white pepper. It is underutilised agro-industrial waste which could be a
promising natural source of cellulose. Hence, finding an optimum way to remove the non cellulose
components without degrading the cellulose structure is essential. In this
work, the effects of alkaline concentration (4, 5, and 6% NaOH) and number of
soaking cycle (3 & 4 cycles) on the characteristics of cellulose from
pepper pericarp were investigated. The obtained cellulose powder was
characterized for its yield, α-cellulose content, particle size, zeta
potential, morphology, whiteness index, crystallinity degree and thermal
stability. The white powder cellulose after 4th cycle treatment with
4% NaOH appeared to have the highest yield (23.63%), α-cellulose (65.97%),
crystallinity structure (51%) and better thermal stability at 334 °C. FTIR
spectrum at band around 1732 cm-1 indicates a partial removal of
non-cellulosic material at all alkalization condition due to the presence of
remaining lignin and hemicellulose. These may contribute to formation of
negative surface charge on all cellulose samples which may potentially enhance
the functionality of the material as emulsifier. Based on two-way ANOVA test,
concentration and cycle of alkaline treatment significantly (p<0.05)
influenced the yield, particle size and zeta potential, meanwhile
α-cellulose significantly influence by NaOH concentration only
(p<0.05). The findings showed that manipulating the synthesis condition of
cellulose powder influenced its properties which could be further used in
various applications.
Keywords: Cellulose powder; concentration alkaline solution;
morphology; white pepper pericarp
Abstrak
Perikarpa lada (Piper nigrum L.) adalah sisa pertanian dalam pengeluaran lada putih. Bahan buangan agroindustri yang kurang digunakan ini mungkin boleh menjadi sumber semula jadi selulosa.
Oleh itu, mencari kaedah yang optimum untuk membuang komponen bukan selulosa tanpa merosakkan strukturnya adalah sangat penting. Dalam kajian ini, kesan kepekatan alkali (4,
5 dan 6% NaOH) dan bilangan kitaran rendaman (3 & 4 kitaran) terhadap ciri serbuk selulosa daripada perikarpa lada dikaji. Serbuk selulosa dicirikan berdasarkan hasil, kandungan α-selulosa, saiz zarah, potensi zeta, morfologi, indeks keputihan, tahap kehabluran dan kestabilan terma. Serbuk putih selulosa dengan 4% NaOH
pada 4 kitaran rendaman alkali mempunyai hasil tertinggi (23.63%), α-selulosa yang tinggi (65.97%), struktur kehabluran (51%) dan kestabilan terma yang lebih baik pada 334 °C. Spektrum FTIR pada sekitar jalur 1732 cm-1 menunjukkan penyingkiran separa bahan bukan selulosa pada semua keadaan rawatan alkali. Ini mungkin menyumbang kepada cas permukaan negatif pada sampel selulosa yang berpotensi dapat meningkatkan fungsi bahan sebagai pengemulsi. Berdasarkan ujian ANOVA dua hala, kepekatan dan kitaran rawatan alkali secara signifikan (p<0.05) mempengaruhi hasil, saiz zarah dan potensi zeta, sementara α-selulosa hanya dipengaruhi secara signifikan oleh kepekatan NaOH sahaja (p<0.05). Secara keseluruhan, penemuan kajian ini membuktikan bahawa manipulasi keadaan sintesis selulosa mampu untuk mempengaruhi sifatnya sehingga dapat digunakan dalam pelbagai aplikasi.
Kata kunci: Kepekatan cecair alkali; morfologi; perikarpa lada putih; serbuk selulosa
RUJUKAN
Abdullah,
N.A., Sainorudin, M.H., Rani, M.S.A., Mohammad, M.,
Abd Kadir, N.H. & Asim, N. 2021. Structure and
thermal properties of microcrystalline cellulose extracted from coconut husk fiber. Polimery 66(3): 187-192.
Aziz, N.S., Sofian‐Seng, N.S., Mohd Razali, N.S., Lim, S.J. & Mustapha, W.A. 2019. A review on conventional and
biotechnological approaches in white pepper production. Journal of the Science of Food and Agriculture 99(6): 2665-2676.
Aziz, N.S., Sofian-Seng, N.S. & Mustapha, W.A.W. 2018.
Functional properties of oleoresin extracted from white pepper (Piper nigrum L.) retting wastewater. Sains Malaysiana 47(9): 2009-2015.
Cai, M., Takagi, H., Nakagaito,
A.N., Katoh, M., Ueki, T., Waterhouse, G.I. & Li,
Y. 2015. Influence of alkali treatment on internal microstructure and tensile
properties of abaca fibers. Industrial Crops and Products 65: 27-35.
Chen, Y., Stevens, M.A., Zhu, Y., Holmes, J. & Xu, H.
2013. Understanding of alkaline pretreatment parameters for corn stover enzymatic
saccharification. Biotechnology for
Biofuels 6: 8.
Chien, J.P.U. & Mansel, E.L. 2017. 100
Years of Agricultural Development in Sarawak. Kuching, Malaysia: Sarawak
Agriculture Veteran Association. pp. 1-245.
Ching, Y.C. & Ng,
T.S. 2014. Effect of preparation conditions on cellulose from oil palm empty
fruit bunch fiber. BioResources 9(4): 6373-6385.
Devi, T.B., Ravi, Y. & Dawange,
S.P. 2018. Processed products from black pepper. Kerala Karshakan e-Journal August: 9-14.
Din, N.A.S., Lim, S.J., Maskat, M.Y. & Zaini, N.A.M.
2020. Bioconversion of coconut husk fibre through biorefinery process of
alkaline pretreatment and enzymatic hydrolysis. Biomass Conversion and Biorefinery 11(3): 815-826.
Entebang, H., Wong, S.K. &
Mercer, Z.J.A. 2020. Development and performance of the pepper industry in
Malaysia: A critical review. International
Journal of Business and Society 21(3): 1402-1423.
Fareez, I.M., Ibrahim, N.A., Wan Yaacob, W.M.H., Mamat Razali,
N.A., Jasni, A.H. & Aziz, F.A. 2018.
Characteristics of cellulose extracted from Josapine pineapple leaf fibre after alkali treatment followed by extensive bleaching. Cellulose 25(8): 4407-4421.
Fatmawati, A., Gunawan,
K.Y. & Hadiwijaya, F.A. 2017. Hydrolysis of
alkaline pretreated banana peel. In IOP Conference Series: Materials Science and
Engineering. IOP Publishing. 273(1): 012011.
Fiore, V., Scalici, T. & Valenza, A. 2014. Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer
composites. Carbohydrate Polymer 106:
77-83.
German Association of Cellulose Chemists and Engineers.
1951. Bestimmung der Alphacellulose und de langeunloslichen Anteils von Zellstoffen. Markblatt IV/29 Zellcheming.
Gomes, A., Matsuo, T., Goda, K.
& Ohgi, J. 2007. Development and effect of alkali
treatment on tensile properties of curaua fiber green composites. Composites
Part A: Applied Science and Manufacturing 38(8): 1811-1820.
Held, M.A., Jiang, N., Basu, D.,
Showalter, A.M. & Faik, A. 2015. Plant cell wall
polysaccharides: Structure and biosynthesis. In Polysaccharides: Bioactivity and Biotechnology, edited by Ramawat, K.G. & Mérillon,
J.M. New York: Springer Science+Business Media. pp.
3-54.
International Pepper
Community. 2018. Pepper Statistical
Yearbook.http://www.ipcnet.org/n/psy2018/html/swps.html. Accessed on 18 February 2019.
Johar, N., Ahmad, I. & Dufresne, A. 2012. Extraction,
preparation and characterization of cellulose fibres and nanocrystals from rice
husk. Industrial Crops and Products 37(1): 93-99.
Kathirselvam, M., Kumaravel, A., Arthanarieswaran,
V.P. & Saravanakumar, S.S. 2019. Characterization
of cellulose fibers in Thespesia populnea barks: Influence of
alkali treatment. Carbohydrate Polymer 217: 178-189.
Kim, J.S., Lee, Y.Y. & Kim, T.H. 2016. A review on
alkaline pre-treatment technology for bioconversion of lignocellulosic biomass. BioResources 199: 42-48.
Kunusa, W.R., Isa, I., Laliyo,
L.A.R. & Iyabu, H. 2018. FTIR, XRD and SEM
analysis of microcrystalline cellulose (MCC) fibers from corncorbs in alkaline treatment. In Journal of Physics: Conference Series 1028(1): 012199.
Mariño, M.A., Rezende, C.A. & Tasic,
L. 2018. A multistep mild process for preparation of nanocellulose from orange
bagasse. Cellulose 25(10): 5739-5750.
Mohd, N.H., Ismail, N.F.H., Zahari,
J.I., Fathilah, W., Kargarzadeh,
H., Ramli, S., Ahmad, I., Yarmo, M.A. & Othaman, R. 2016. Effect of aminosilane modification on nanocrystalline cellulose properties. Journal of Nanomaterials 2016: 4804271.
Olalere, O.A., Abdurahman, H.N., Yunus, R.B.M., Alara, O.R.,
Ahmad, M.M., Zaki, Y.H. & Abdlrhman,
H.S.M. 2018. Parameter study, antioxidant activities, morphological and
functional characteristics in microwave extraction of medicinal oleoresins from
black and white pepper. Journal of Taibah
University for Science 12(6): 730-737.
Ouajai,
S. & Shanks, R.A. 2005. Composition, structure and thermal degradation of
hemp cellulose after chemical treatments. Polymer
Degradation and Stability 89(2): 327-335.
Oushabi, A., Sair, S., Hassani, F.O., Abboud, Y., Tanane, O. & El Bouari, A.
2017. The effect of alkali treatment on mechanical, morphological and thermal
properties of date palm fibers (DPFs): Study of the
interface of DPF-polyurethane composite. South
African Journal of Chemistry 23: 116-123.
Radakisnin, R., Abdul Majid, M.S.,
Jamir, M.R.M., Jawaid, M., Sultan, M.T.H. & Mat
Tahir, M.F. 2020. Structural, morphological and thermal properties of cellulose
nanofibers from Napier fiber (Pennisetum purpureum). Materials 13(18):
4125.
Raman, G. & Gaikar, V.G. 2002. Extraction of piperine from Piper nigrum (black pepper) by
hydrotropic solubilization. Industrial & Engineering
Chemistry Research 41(12): 2966-2976.
Reddy,
K.O., Maheswari, C.U., Shukla, M., Song, J.I. & Rajulu, A.V. 2013. Tensile and structural characterization
of alkali treated Borassus fruit fine fibers. Composites
Part B: Engineering 44(1): 433-438.
Rosa, M.F., Medeiros, E.S., Malmonge,
J.A., Gregorski, K.S., Wood, D.F., Mattoso, L.H.C., Glenn, G., Orts, S.H. & Imam, S.H. 2010. Cellulose nanowhiskers from coconut husk fibers:
Effect of preparation conditions on their thermal and morphological behavior. Carbohydrate
Polymers 81(1): 83-92.
Rosnah, S. & Chan, S.C. 2014. Enzymatic rettings of green pepper berries for white pepper production. International Food
Research Journal 21(1): 237-245.
Santos, E.B.C., Moreno, C.G., Barros, J.J.P., Moura,
D.A.D., Fim, F.D.C., Ries,
A., Wellen, R.M. & Silva, L.B.D. 2018. Effect of
alkaline and hot water treatments on the structure and morphology of Piassava fibers. Journal of
Materials Research 21(2): e20170365.
Segal, L.G.J.M.A., Creely, J.J.,
Martin Jr., A.E. & Conrad, C.M. 1959. An empirical method for estimating
the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal 29(10):
786-794.
Singanusong, R., Tochampa,
W., Kongbangkerd, T. & Sodchit,
C. 2014. Extraction and properties of cellulose from banana peels. Suranaree Journal of Science & Technology 21(3): 201-213.
Sosiati, H., Pratiwi,
H. & Wijayanti, D.A. 2015. The influence of
alkali treatments on tensile strength and surface morphology of cellulose
microfibrils. Advanced Materials Research 1123: 147-150.
Sreekala, G.S., Meenakumari,
K.S. & Vigi, S. 2019. Microbial isolate for the
production of quality white pepper (Piper
nigrum L.). Journal of Tropical
Agriculture 57(2): 114-121.
Tenorio, A.T., Gieteling, J., Nikiforidis, C.V., Boom, R.M. & Van der Goot, A.J. 2017. Interfacial properties of green leaf
cellulosic particles. Food Hydrocolloid 71: 8-16.
Tibolla, H., Pelissari,
F.M., Martins, J.T., Vicente, A.A. & Menegalli,
F.C. 2018. Cellulose nanofibers produced from banana peel by chemical and
mechanical treatments: Characterization and cytotoxicity assessment. Food Hydrocolloids 75: 192-201.
Tran, A.T., Cao, N.H., Le, P.T.K., Mai, P.T. & Nguyen,
Q.D. 2020. Reusing alkaline solution in lignocellulose pre-treatment to save
consumable chemicals without losing efficiency. Chemical Engineering Transactions 78: 307-312.
Wallecan, J., McCrae, C., Debon, S.J.J.,
Dong, J. & Mazoyer, J. 2015. Emulsifying and
stabilizing properties of functionalized orange pulp fibers. Food Hydrocolloid 47: 115-123.
Widiarto, S., Yuwono, S.D., Rochliadi, A. & Arcana, I.M. 2017. Preparation and
characterization of cellulose and nanocellulose from agro-industrial
waste-cassava peel. In IOP
Conference Series: Materials Science and Engineering 176(1): 012052.
Winuprasith, T. & Suphantharika, M.
2013. Microfibrillated cellulose from mangosteen (Garcinia mangostana L.) rind: Preparation, characterization, and
evaluation as an emulsion stabilizer. Food
Hydrocolloid 32(2): 383-394.
Yew, B.S., Muhamad, M., Mohamed,
S.B. & Wee, F.H. 2019. Effect of alkaline treatment on structural
characterisation, thermal degradation and water absorption ability of coir
fibre polymer composites. Sains Malaysiana 48(3): 653-659.
Zahari, M.J.I., Jahi,
N.M., Mohd, N.H., Ahmad, I., Baharum,
A., Lazim, A.M., Ramli, S. & Othaman,
R. 2018. Enhanced performance of cellulose from palm oil empty fruit bunch
(EFB) via acetylation and silylation. Preprints 2018: 2018070314.
Zain, N.F.M., Yusop, S.M. &
Ahmad, I. 2014. Preparation and characterization of cellulose and nanocellulose
from pomelo (Citrus grandis)
albedo. Journal of Nutrition & Food Science 5(1):
1000334.
Zhou, Y.M., Fu, S.Y., Zheng, L.M. & Zhan, H.Y. 2012.
Effect of nanocellulose isolation techniques on the formation of reinforced
poly (vinyl alcohol) nanocomposite films. eXPRESS Polymer Letters 6(10): 794-804.
*Pengarang untuk surat-menyurat; email: soffalina@ukm.edu.my
|