Sains Malaysiana 51(5)(2022): 1363-1372
http://doi.org/10.17576/jsm-2022-5105-08
Epidermal Mucus of Anabas testudineus as a
Promising Source of Antibacterial and Anticancer Agents
(Mukus Epidermis Anabas testudineus sebagai
Punca Agen Antibakteria dan Antikanser yang Menggalakkan)
AHMED
ABDULKAREEM NAJM1, HERRYAWAN RYADI EZIWAR DYARI3, BABUL AIRIANAH OTHMAN2,4, SHARIFAH SAKINAH SYED ALWI5, AHMAD AZFARALARRIFF2, MUHAMMAD SHAHID1, SITI AISYAH SANUSI2, DOUGLAS LAW2,6 & SHAZRUL FAZRY2,4,7,*
1Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
3Department of Earth Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
4Innovative Center for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
5Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor
Darul Ehsan, Malaysia
6Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
7Chini Lake Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 25 November 2020/Diterima: 22 Oktober 2021
ABSTRACT
Anabas testudineus is a sturdy
freshwater fish that can live in a polluted environment due to the epidermal
mucus (EM) that protects the fish from pathogens or germs. This study explored
the functional properties of the EM as a potential antimicrobial and anticancer
agent. Inactive Pseudomonas aeruginosa was introduced into fish tanks to
stimulate the production of EM. This stimulus significantly increased EM
production by more than 100% after 10 days of stimulation, indicating that EM
production was influenced by environmental biotic stress. In vitro antibacterial activity tests showed that EM has significant antibacterial
activity against Escherichia coli (12 ± 0.23 mm) and P. aeruginosa (10 ± 0.13 mm) at the tested concentration of 1000 μg/mL. Further characterisation against cells
showed that EM has a cytotoxic effect against human breast cancer (MCF7) and
human melanoma (A375.S2) producing an IC50 value of 4.97 ± 0.25 and 6.27 ± 0.17 mg/mL,
respectively. In contrast, no cytotoxicity against normal fibroblast skin cells
(HS27) was observed. In addition, apoptosis analysis showed that EM could cause DNA fragmentation of cancer cells,
while no effect on normal cells was observed. These findings indicated that EM
from A. testudineus could be further studied and explored as an
anticancer agent.
Keywords: Anabas testudineus; anticancer; antimicrobial peptide; epidermal mucus; mucus secretion
ABSTRAK
Anabas testudineus adalah
ikan air tawar yang lasak dan dapat hidup dalam persekitaran yang tercemar
kerana mempunyai mukus epidermis (EM) yang melindungi ikan ini daripada patogen
atau kuman. Penyelidikan ini mengkaji tentang sifat berfungsi EM sebagai agen antimikrob dan
antikanser yang berpotensi. Pseudomonas aeruginosa yang tidak aktif
dimasukkan ke dalam tangki ikan untuk merangsang pengeluaran EM. Rangsangan ini
meningkatkan pengeluaran EM dengan ketara lebih daripada 100% selepas 10 hari
rangsangan yang menunjukkan bahawa pengeluaran EM dipengaruhi oleh tekanan
biotik persekitaran. Ujian aktiviti antibakteria secara in vitro menunjukkan bahawa EM mempunyai aktiviti antibakteria terhadap Escherichia
coli (12 ± 0.23 mm) dan P. aeruginosa (10 ± 0.13 mm) pada kepekatan 1000 μg/mL.
Pencirian lebih lanjut terhadap sel menunjukkan bahawa EM mempunyai kesan
sitotoksik terhadap sel barah payudara manusia (MCF7) dan sel melanoma manusia
(A375.S2), masing-masing menunjukkan nilai IC50 4.97 ± 0.25 dan 6.27
± 0.17 mg/mL. Sebaliknya, tiada kesan toksik terhadap sel kulit fibroblas
normal (HS27) yang diperhatikan. Di samping itu, analisis apoptosis menunjukkan
bahawa EM dapat menyebabkan fragmentasi DNA bagi sel kanser, tetapi tiada kesan
ke atas sel normal yang diperhatikan. Hasil kajian ini menunjukkan bahawa EM
daripada A. testudineus boleh dilakukan kajian selanjutnya dan diterokai
dengan lebih mendalam sebagai agen antikanser.
Kata kunci: Anabas testudineus; antikanser; mukus
epidermis; peptida antimikrob; rembesan mucus
RUJUKAN
Al-Rasheed,
A., Handool, K.O., Garba, B., Noordin, M.M., Bejo, S.K., Kamal, F.M. & Mohd
Daud, H.H. 2018. Crude extracts of epidermal mucus and epidermis of climbing
perch Anabas testudineus and its
antibacterial and haemolytic activities. The Egyptian Journal of Aquatic
Research 44(2): 125-129.
Alijani
Ardeshir, R., Rastgar, S., Morakabati, P., Mojiri-Forushani, H., Movahedinia,
A. & Salati, A.P. 2020. Selective induced apoptosis and cell cycle arrest
in MCF7 and LNCap cell lines by skin mucus from round goby (Neogobius melanostomus) and common carp
(Cyprinus carpio) through P53 expression. Cytotechnology 72(3):
367-376.
Arockiaraj,
J., Gnanam, A.J., Muthukrishnan, D., Gudimella, R., Milton, J., Singh, A.,
Muthupandian, S., Kasi, M. & Bhassu, S. 2013. Crustin, a WAP domain
containing antimicrobial peptide from freshwater prawn Macrobrachium
rosenbergii: Immune
characterization. Fish & Shellfish
Immunology 34(1): 109-118.
Arockiaraj,
J., Kumaresan, V., Bhatt, P., Palanisamy, R., Gnanam, A.J., Pasupuleti, M.,
Kasi, M. & Chaurasia, M.K. 2014. A novel single-domain peptide, anti-LPS
factor from prawn: Synthesis
of peptide, antimicrobial properties and complete molecular characterization. Peptides 53: 79-88.
Arulvasu,
C., Selvamathi, S., Babu, G. & Dhanasekaran, G. 2012. Effect of crude and
partially purified epidermal mucus proteins of marine catfish Tachysurus
dussumieri on human cancer cell line. Journal of Advanced Scientific
Research 1(4): 164-169.
Barry, M.A. &
Eastman, A. 1992. Endonuclease activation during apoptosis: The role of cytosolic Ca2+ and pH. Biochemical and Biophysical
Research Communications 186(2): 782-789.
Bergsson, G., Agerberth,
B., Jörnvall, H. & Gudmundsson, G.H. 2005. Isolation and identification of
antimicrobial components from the epidermal mucus of Atlantic cod (Gadus morhua). The FEBS Journal 272(19): 4960-4969.
Bradford, M.M. 1976. A
rapid and sensitive method for the quantitation of microgram quantities of
protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1-2): 248-254.
Buhari, I., Roslida, A.,
Hidayat, M. & Mat Jais, A. 2015. Haruan fish extract as potential agent for
cancer therapy. Journal of Cancer Science & Therapy 7(6): 186-189.
Chong, K., Ying, T.S.,
Foo, J., Jin, L.T. & Chong, A. 2005. Characterisation of proteins in
epidermal mucus of discus fish (Symphysodon spp.)
during parental phase. Aquaculture 249(1-4): 469-476.
Danneman, P.J. &
Michael, J.G. 1976. Reaginic antibody production to protein antigens of Escherichia
coli and Pseudomonas aeruginosa by mice. Infection and Immunity 14(3): 694-702.
Dash, S., Das, S.,
Samal, J. & Thatoi, H. 2018. Epidermal mucus, a major determinant in fish
health: A review. Iranian Journal of
Veterinary Research 19(2): 72-81.
Dennison, S.R., Harris,
F. & Phoenix, D.A. 2007. The interactions of aurein 1.2 with cancer cell
membranes. Biophysical Chemistry 127(1-2): 78-83.
Faiz, A., Fernando, R.,
Gnanathasan, C.A., Habib, A.G. & Yang, Z. 2015. Clinical Toxinology in Asia Pacific and Africa, India, Springer Science+
Business Media. pp. 1-18.
Fuochi, V., Li Volti,
G., Camiolo, G., Tiralongo, F., Giallongo, C., Distefano, A., Petronio
Petronio, G., Barbagallo, I., Viola, M. & Furneri, P.M. 2017. Antimicrobial
and anti-proliferative effects of skin mucus derived from Dasyatis pastinaca (Linnaeus, 1758). Marine Drugs 15(11): 342.
Hilchie, A.L., Doucette,
C.D., Pinto, D.M., Patrzykat, A., Douglas, S. & Hoskin, D.W. 2011.
Pleurocidin-family cationic antimicrobial peptides are cytolytic for breast
carcinoma cells and prevent growth of tumor xenografts. Breast Cancer Research 13(5): 1-16.
Jin, G. & Weinberg,
A. 2019. Human antimicrobial peptides and cancer. Seminars in Cell &
Developmental Biology 88(1): 156-162.
Kourmouli, A., Valenti,
M., van Rijn, E., Beaumont, H.J., Kalantzi, O.I., Schmidt-Ott, A. & Biskos,
G. 2018. Can disc diffusion susceptibility tests assess the antimicrobial
activity of engineered nanoparticles? Journal
of Nanoparticle Research 20(62): 1-6.
Kumari, S., Tyor, A.K.
& Bhatnagar, A. 2019. Evaluation of the antibacterial activity of skin
mucus of three carp species. International
Aquatic Research 11(3): 225-239.
Laemmli, U.K. 1970.
Cleavage of structural proteins during the assembly of the head of
bacteriophage T4. Nature 227(5259):
680-685.
Lee, M. 1995. Official Methods of Analysis of AOAC
International. 16th ed. Washington, DC: Elsevier. pp. 1-711.
Mai, S., Mauger, M.T.,
Niu, L.N., Barnes, J.B., Kao, S., Bergeron, B.E., Ling, J.Q. & Tay, F.R.
2017. Potential applications of antimicrobial peptides and their mimics in
combating caries and pulpal infections. Acta
Biomaterialia 49(1): 16-35.
Mohammed,
F.A., Elkady, A.I., Syed, F.Q., Mirza, M.B., Hakeem, K.R. & Alkarim, S.
2018. Anethum graveolens (dill) - A
medicinal herb induces apoptosis and cell cycle arrest in HepG2 cell line. Journal
of Ethnopharmacology 219(1): 15-22.
Ndobe,
S., Masyahoro, A., Serdiati, N. & Moore, A. 2019. Meristic characters and
length-weight relation of climbing perch (Anabas testudineus) from
wetlands in Sigi District, Central Sulawesi, Indonesia. IOP Conference Series: Earth
and Environmental Science 370: 012001.
Panno, M.L., Giordano,
F., Mastroianni, F., Morelli, C., Brunelli, E., Palma, M.G., Pellegrino, M.,
Aquila, S., Miglietta, A. & Mauro, L. 2006. Evidence that low doses of
Taxol enhance the functional transactivatory properties of p53 on p21 waf
promoter in MCF-7 breast cancer cells. FEBS
Letters 580(9): 2371-2380.
Patrzykat, A., Gallant,
J.W., Seo, J.K., Pytyck, J. & Douglas, S.E. 2003. Novel antimicrobial
peptides derived from flatfish genes. Antimicrobial
Agents and Chemotherapy 47(8): 2464-2470.
Rahman, A.K.A. 2005. Freshwater Fishes of Bangladesh.
2nd ed.
Dhaka: Zoological Society of Bangladesh.
Ross, N.W., Firth, K.J.,
Wang, A., Burka, J.F. & Johnson, S.C. 2000. Changes in hydrolytic enzyme
activities of naive Atlantic salmon Salmo salar skin mucus due to
infection with the salmon louse Lepeophtheirus salmonis and cortisol
implantation. Diseases of Aquatic
Organisms 41(1): 43-51.
Rozek,
T., Wegener, K.L., Bowie, J.H., Olver, I.N., Carver, J.A., Wallace, J.C. &
Tyler, M.J. 2000. The antibiotic and anticancer active aurein peptides from the
Australian Bell Frogs Litoria aurea and Litoria raniformis the
solution structure of aurein 1.2. European Journal of Biochemistry 267(17): 5330-5341.
Sarkar,
U.K., Deepak, P.K., Kapoor, D., Negi, R.S., Paul, S.K. & Singh, S. 2005.
Captive breeding of climbing perch Anabas testudineus (Bloch, 1792) with
Wova-FH for conservation and aquaculture. Aquaculture Research 36(10):
941-945.
Shephard,
K.L. 1993. Mucus on the epidermis of fish and its influence on drug
delivery. Advanced Drug Delivery Reviews 11(3): 403-417.
Swinney,
D.C. 2011. Molecular mechanism of action (MMoA) in drug discovery. Annual Reports in Medicinal Chemistry 46: 301-317.
Teerasak, E.,
Thongararm, P., Roytrakul, S., Meesuk, L. & Chumnanpuen, P. 2016.
Prediction of anticancer peptides against MCF-7 breast cancer cells from the
peptidomes of Achatina fulica mucus fractions. Computational and Structural Biotechnology Journal 14: 49-57.
Thomas, J., Thanigaivel,
S., Vijayakumar, S., Acharya, K., Shinge, D., Seelan, T.S.J., Mukherjee, A.
& Chandrasekaran, N. 2014. Pathogenecity of Pseudomonas aeruginosa in Oreochromis mossambicus and treatment using lime oil nanoemulsion. Colloids and Surfaces B: Biointerfaces 116: 372-377.
Topic, P.N., Strunjak-Perovic,
I., Coz-Rakovac, R., Barisic, J., Jadan, M., Persin Berakovic, A. &
Sauerborn Klobucar, R. 2012. Tricaine methane-sulfonate (MS-222) application in
fish anaesthesia. Journal of Applied
Ichthyology 28(4): 553-564.
Walker, P.R., LeBlanc,
J. & Sikorska, M. 1997. Evidence that DNA fragmentation in apoptosis is
initiated and propagated by single-strand breaks. Cell Death & Differentiation 4(6): 506-515.
Wang,
S., Wang, Y., Ma, J., Ding, Y. & Zhang, S. 2011. Phosvitin plays a critical
role in the immunity of zebrafish embryos via acting as a pattern recognition
receptor and an antimicrobial effector. Journal of Biological Chemistry 286(25): 22653-22664.
Wei,
O.Y., Xavier, R. & Marimuthu, K. 2010. Screening of antibacterial activity
of mucus extract of snakehead fish, Channa striatus (Bloch). European Review for Medical and
Pharmacological Sciences 14(8): 675-681.
Wyllie, A., Kerr, J.R. & Currie, A.
1980. Cell death: The significance of apoptosis. International Review of Cytology 68: 251-306.
*Pengarang
untuk surat-menyurat; email: shazrul@ukm.edu.my
|