Sains Malaysiana 51(5)(2022): 1465-1473

http://doi.org/10.17576/jsm-2022-5105-16

 

Identification of Antimycobacterial from Actinobacteria (INACC A758) Secondary Metabolites using Metabolomics Data

(Pengenalpastian Antimikobakteria daripada Metabolit Sekunder Aktinobakteria (INACC A758) menggunakan Data Metabolomik)

 

MAYA DIAN RAKHMAWATIE1,2, MUSTOFA3, PUSPITA LISDIYANTI4, WORO RUKMI PRATIWI3 & TRI WIBAWA5,*

 

1Doctoral Program of Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

2Department of Biomedical Sciences, Faculty of Medicine, Universitas Muhammadiyah Semarang, Semarang 50273, Indonesia

3Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

4Research Center for Biotechnology, Indonesian Institute of Sciences, Cibinong, Bogor 16911, Indonesia

5Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

 

Diserahkan: 10 Julai 2020/Diterima: 8 Oktober 2021

 

Abstract

Actinobacteria produce active secondary metabolite with medicinal properties, such as antibacterial or anticancer. However, there are some reports about the difficulties in discovering novel secondary metabolites. Therefore, the need for a new approach is obvious. Several factors such as types of nutrients in the culture media or different solvents used for extraction have been proven to influence the Actinobacteria secondary metabolite production. In this study, a combination of culture media optimization and metabolites fingerprint analysis were applied to identify antimycobacterial active compounds from Actinobacteria (InaCC A758). Five culture media were used in the secondary metabolite production of the Actinobacteria. The metabolite fingerprinting was carried out by analyzing the secondary metabolite profile extracted from culture media optimization using UPLC-MS. Multivariate analysis, i.e. cluster analysis and principal component analysis (PCA) was applied. The result showed that a unique antimycobacterial compound candidate against Mycobacterium smegmatis was produced by SYP media cultured InaCC A758 (MIC 6.25 µg/mL).

 

Keywords: Actinobacteria; antimycobacterial; culture optimization; metabolite fingerprint; secondary metabolites

 

Abstrak

Aktinobakteria menghasilkan metabolit sekunder aktif dengan sifat perubatan, seperti antibakteria atau antikanser. Walau bagaimanapun, terdapat beberapa laporan tentang kesukaran untuk menemui metabolit sekunder yang novel. Oleh itu, keperluan untuk pendekatan baru adalah jelas. Beberapa faktor seperti jenis nutrien dalam media kultur atau pelarut berbeza yang digunakan untuk pengekstrakan telah terbukti mempengaruhi pengeluaran metabolit sekunder Aktinobakteria. Dalam kajian ini, gabungan pengoptimuman media kultur dan analisis cap jari metabolit digunakan untuk mengenal pasti sebatian aktif antimikobakteria daripada Aktinobakteria (InaCC A758). Lima media kultur digunakan dalam penghasilan metabolit sekunder Aktinobakteria. Cap jari metabolit telah dijalankan dengan menganalisis profil metabolit sekunder yang diekstrak daripada pengoptimuman media kultur menggunakan UPLC-MS. Analisis multivariat, iaitu analisis kelompok dan analisis komponen utama (PCA) telah digunakan. Keputusan menunjukkan bahawa sebatian antimikrobakteria unik terhadap Mycobacterium smegmatis dihasilkan oleh media SYP yang dikulturkan dengan InaCC A758 (MIC 6.25 µg/mL).

 

Kata kunci: Aktinobakteria; antimikobakteria; cap jari metabolit; metabolit sekunder; pengoptimuman budaya

 

RUJUKAN

Adnani, N., Vazquez-Rivera, E., Adibhatla, S.N., Ellis, G.A., Braun, D.R. & Bugni, T.S. 2015. Investigation of interspecies interactions within marine micromonosporaceae using an improved co-culture approach. Marine Drugs 13(10): 6082-6098.

Al-Ansari, M., Kalaiyarasi, M., Almalki, M.A. & Vijayaraghavan, P. 2020. Optimization of medium components for the production of antimicrobial and anticancer secondary metabolites from Streptomyces sp. AS11 isolated from the marine environment. Journal of King Saud University - Science 32(3): 1993-1998.

Al-Ghazali, L.H. & Omran, R. 2017. Optimization of medium composition for antibacterial metabolite production from Streptomyces sp. Asian Journal of Pharmaceutical and Clinical Research 10(9): 381-385.

Barka, E.A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jazquard, C., Klenk, H.P., Clément, C., Ouhdouch, Y. & van Wezeld, G.P. 2016. Taxonomy, physiology, and natural products of Actinobacteria. Microbiology and Molecular Biology Review 80(1): 1-43.

Bérdy, J. 2012. Thoughts and facts about antibiotics: where we are now and where we are heading. The Journal of Antibiotics 65(8): 385-395.

Bode, H.B., Bethe, B., Höfs, R. & Zeeck, A. 2002. Big effects from small changes: Possible ways to explore nature’s chemical diversity. ChemBioChem 3(7): 619-627.

Brown-Elliott, B.A., Nash, K.A. & Wallace Jr., R.J. 2012. Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. Clinical Microbiology Reviews 25(3): 545-582.

Cordella, C.B.Y. 2012. PCA: The basic building block of chemometrics. In Analytical Chemistry, edited by Krull, I.S. IntechOpen. pp. 1-46.

Cumsille, A., Undabarrena, A., González, V., Claverías, F., Rojas, C. & Cámara, B. 2017. Biodiversity of actinobacteria from the South Pacific and the assessment of Streptomyces chemical diversity with metabolic profiling. Marine Drugs 15(9): 286.

Derewacz, D.K., Goodwin, C.R., McNees, C.R., McLean, J.A. & Bachmann, B.O. 2013. Antimicrobial drug resistance affects broad changes in metabolomic phenotype in addition to secondary metabolism. In Proceedings of the National Academy of Sciences of the United States of America. Pennsylvania State University. 110(6): 2336-2341.

Djinni, I., Defant, A., Kecha, M. & Mancini, I. 2013. Metabolite profile of marine-derived endophytic Streptomyces sundarbansensis WR1L1S8 by liquid chromatography-mass spectrometry and evaluation of culture conditions on antibacterial activity and mycelial growth. Journal of Applied Microbiology 116(1): 39-50.

Escher, S.K.S., de Sousa Júnior, J.J.V., Dias, A.L., de Amorim, E.L.C. & De Araújo, J.M. 2016. Influence of glucose and stirring in the fermentation process in order to produce anti-Candida metabolites produced by Streptomyces sp. Brazilian Journal of Pharmaceutical Sciences 52(2): 265-272.

de Oliveira, M.F., da Silva, M.G. & Van Der Sand, S.T. 2010. Anti-phytopathogen potential of endophytic actinobacteria isolated from tomato plants (Lycopersicon esculentum) in southern Brazil, and characterization of Streptomyces sp. R18(6), a potential biocontrol agent. Research in Microbiology 161(7): 565-572.

Forner, D., Berrué, F., Correa, H., Duncan, K. & Kerr, R.G. 2013. Chemical dereplication of marine actinomycetes by liquid chromatography - high resolution mass spectrometry profiling and statistical analysis. Analytica Chimica Acta 805: 70-79.

Gaudêncio, S.P. & Pereira, F. 2015. Dereplication: Racing to speed up the natural products discovery process. Natural Product Reports 32(6): 779-810.

Guillarme, D., Schappler, J., Rudaz, S. & Veuthey, J.L. 2010. Coupling ultra-high-pressure liquid chromatography with mass spectrometry. TrAC Trends in Analytical Chemistry 29(1): 15-27.

Hamedi, J., Imanparast, S. & Mohammadipanah, F. 2015. Molecular, chemical and biological screening of soil actinomycete isolates in seeking bioactive peptide metabolites. Iranian Journal of Microbiology 7(1): 23-30.

Happyana, N., Muntendam, R. & Kayser, O. 2012. Metabolomics as a bioanalytical tool for characterization of medicinal plants and their phytochemical preparations. In Pharmaceutical Biotechonology: Drug Discovery and Clinical Applications. 2nd ed., edited by Kayser, O. & Warzecha, H. Chapter 20. Wiley - VCH Verlag GmbH & Co. KGaA.

Hoshino, S., Zhang, L., Awakawa, T., Wakimoto, T., Onaka, H. & Abe, I. 2014. Arcyriaflavin E, a new cytotoxic indolocarbazole alkaloid isolated by combined-culture of mycolic acid-containing bacteria and Streptomyces cinnamoneus NBRC 13823. The Journal of Antibiotics 68(5): 342-344.

Ito, T., Odake, T., Katoh, H., Yamaguchi, Y. & Aoki, M. 2011. High-throughput profiling of microbial extracts. Journal of Natural Products 74(5): 983-988.

Jacob, J., Rajendran, R.U., Priya, S.H., Purushothaman, J. & Saraswathy Amma, D.K.B.N. 2017. Enhanced antibacterial metabolite production through the application of statistical methodologies by a Streptomyces nogalater NIIST A30 isolated from Western Ghats forest soil. PLoS ONE 12(4): e0175919.

Kiranmayi, M.U., Sudhakar, P., Sreenivasulu, K. & Vijayalakshmi, M. 2011. Optimization of culturing conditions for improved production of bioactive metabolites by Pseudonocardia sp. VUK-10. Mycobiology 39(3): 174-181.

Lahlou, M. 2013. The success of natural products in drug discovery. Pharmacology & Pharmacy 4: 17-31.

Liu, X., Ashforth, E., Ren, B., Song, F., Dai, H., Liu, M., Wang, J., Xie, Q. & Zhang, L. 2010. Bioprospecting microbial natural product libraries from the marine environment for drug discovery. The Journal of Antibiotics 63(8): 415-422.

Mammo, F. & Endale, M. 2015. Recent trends in rapid dereplication of natural product extracts: An update. Journal of Coastal Life Medicine 3(3): 178-182.

Mangamuri, U.K., Poda, S., Naragani, K. & Muvva, V. 2012. Influence of cultural conditions for improved production of bioactive metabolites by Streptomyces cheonanensis VUK-A isolated from coringa mangrove ecosystem. Currents Trends in Biotechnolology and Pharmacy 6(1): 99-111.

Narayana, K.J.P. & Vijayalakshmi, M. 2008. Optimization of antimicrobial metabolites production by Streptomyces albidoflavus. Research Journal of Pharmacology 2(1): 4-7.

Perrot-Dockès, M., Lévy-Leduc, C., Chiquet, J., Sansonnet, L., Brégère, M., Étienne, M.P., Robin, S. & Genta-Jouve, G. 2018. A variable selection approach in the multivariate linear model: An application to LC-MS metabolomics data. Statistical Application in Genetics and Molecular Biology 17(5): 1-14.

Rajan, B.M. & Kannabiran, K. 2014. Extraction and identification of antibacterial secondary metabolites from marine Streptomyces sp. VITBRK2. International Journal of Molecular and Cellular Medicine 3(3): 130-137.

Rakhmawatie, M.D., Wibawa, T., Lisdiyanti, P., Pratiwi, W.R. & Mustofa. 2019. Evaluation of crystal violet decolorization assay and resazurin microplate assay for antimycobacterial screening. Heliyon 5(8): e02263.

Retnowati, Y., Moeljopawiro, S., Djohan, T.S. & Soetarto, E.S. 2018. Antimicrobial activities of actinomycete isolates from rhizospheric soils in different mangrove forests of Torosiaje, Gorontalo, Indonesia. Biodiversitas Journal of Biological Diversity 19(6): 2196-2203.

Romano, S., Jackson, S.A., Patry, S. & Dobson, A.D.W. 2018. Extending the “one strain many compounds” (OSMAC) principle to marine microorganisms. Marine Drugs 16(7): 244.

Romero-Rodríguez, A., Maldonado-Carmona, N., Ruiz-Villafán, B., Koirala, N., Rocha, D. & Sánchez, S. 2018. Interplay between carbon, nitrogen and phosphate utilization in the control of secondary metabolite production in Streptomyces. Antonie van Leeuwenhoek 111(5): 761-781.

Ruiz, B., Chávez, A., Forero, A., García-Huante, Y., Romero, A., Sánchez, M., Rocha, D., Sánchez, B., Rodríguez-Sanoja, R., Sánchez, S. & Langley, E. 2010. Production of microbial secondary metabolites: Regulation by the carbon source. Critical Reviews Microbiology 36(2): 146-167.

Schrey, S.D., Erkenbrack, E., Früh, E., Fengler, S., Hommel, K., Horlacher, N., Schulz, D., Ecke, M., Kulik, A., Fiedler, H.P., Hampp, R. & Tarkka, M.T. 2012. Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated Streptomycetes. BMC Microbiology 12: 1-14.

Sengupta, S., Pramanik, A., Ghosh, A. & Bhattacharyya, M. 2015. Antimicrobial activities of actinomycetes isolated from unexplored regions of Sundarbans mangrove ecosystem. BMC Microbiology 15: 170.

Setiawati, S., Nuryastuti, T., Sholikhah, E.N., Lisdiyanti, P., Pratiwi, S.U.T., Sulistiyani, T.R., Ratnakomala, S., Jumina & Mustofa. 2021. The potency of actinomycetes extracts isolated from Pramuka Island, Jakarta, Indonesia as antimicrobial agents. Biodiversitas Journal of Biological University 22(3): 1104-1111.

Sharma, D., Kaur, T., Chadha, B.S. & Manhas, R.K. 2011. Antimicrobial activity of actinomycetes against multidrug resistant Staphylococcus aureus, E. coli and various other pathogens. Tropical Journal of Pharmaceutical Research 10(6): 801-808.

Singh, R. & Dubey, A.K. 2018. Diversity and applications of endophytic Actinobacteria of plants in special and other ecological niches. Frontiers in Microbiology 9: 1767.

Son, S.Y., Lee, S., Singh, D., Lee, N.R., Lee, D.Y. & Lee, C.H. 2018. Comprehensive secondary metabolite profiling toward delineating the solid and submerged-state fermentation of Aspergillus oryzae KCCM 12698. Frontiers in Microbiology 9: 1076.

Tormo, J.R., García, J.B., DeAntonio, M., Feliz, J., Mira, A., Díez, M.T., Hernández, P. & Peláez, F. 2003. A method for the selection of production media for actinomycete strains based on their metabolite HPLC profiles. Journal of Industrial Microbiology and Biotechnology 30(10): 582-588.

van Ingen, J., Boeree, M.J., van Soolingen, D. & Mouton, J.W. 2012. Resistance mechanisms and drug susceptibility testing of nontuberculous mycobacteria. Drug Resistance Updates 15(3): 149-161.

Wang, X., Huang, L., Kang, Z., Buchenauer, H. & Gao, X. 2010. Optimization of the fermentation process of Actinomycete strain Hhs.015(T). Journal of Biomedicine and Biotechnology 2010: 141876.

Wolfender, J.L., Marti, G., Thomas, A. & Bertrand, S. 2015. Current approaches and challenges for the metabolite profiling of complex natural extracts. Journal of Chromatography A 1382: 136-164.

Wolfender, J.L., Nuzillard, J.M., van der Hooft, J.J.J., Renault, J.H. & Bertrand, S. 2019. Accelerating metabolite identification in natural product research: Toward an ideal combination of liquid chromatography-high-resolution tandem mass spectrometry and NMR profiling, in silico databases, and chemometrics. Analytical Chemistry 91(1): 704-742.

Woods, G.L., Brown-Elliott, B.A., Conville, P.S., Desmond, E.P., Hall, G.S., Lin, G., Pfyffer, G.E., Ridderhof, J.C., Siddiqi, S.H., Wallace Jr., R.J. & Warren, N.G. 2011. Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes. 2nd eds. Clinical and Laboratory Standards Institute (CLSI). CLSI Standard: Guidelines for Health Care Excellence.

Zaher, A.M., Moharram, A.M., Davis, R., Panizzi, P., Makboul, M.A. & Calderón, A.I. 2015. Characterisation of the metabolites of an antibacterial endophyte Botryodiplodia theobromae Pat. of Dracaena draco L. by LC-MS/MS. Natural Product Research 29(24): 2275-2281.

Zhu, H., Sandiford, S.K. & van Wezel, G.P. 2014. Triggers and cues that activate antibiotic production by actinomycetes. Journal of Industrial Microbiology and Biotechnology 41(2): 371-386.

 

*Pengarang untuk surat-menyurat; email: twibawa@ugm.ac.id

 

 

     

sebelumnya