Sains Malaysiana 51(6)(2022):
1653-1666
Integrating Lineament Density in the DRASTIC Model for Better Groundwater Assessment
(Mengintegrasikan Ketumpatan Lineamen dalam Model
DRASTIC untuk Penilaian Air
Tanah yang Lebih Baik)
NURSABRINA SYAHIRAH HAIRUDIN1,
NORHAYATI MAT RAWI1,2, NORSYAFINA ROSLAN1 & NORBERT SIMON1,*
1Geology
Program, School of Environment & Natural Resource Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Department
of Mineral and Geoscience Malaysia, Aras
9, Menara PjH, No. 2,
Jalan Tun Abdul Razak, Presint 2, 62100 Putrajaya,
Federal Territory, Malaysia
Diserahkan: 5 Julai 2021/Diterima: 2 November 2021
Abstract
Forecast of groundwater potential zones is essential,
especially in areas where surface water is not sufficient during the dry
season, such as the Tampin District, Negeri Sembilan,
Malaysia. In the literature, the lineament parameter is often combined with a
groundwater assessment model such as the DRASTIC model. However, most of these
practices do not follow the procedure of assigning weight to the parameter as
used in the model, so many researchers assign different ranges of weights to
the lineament parameter. Therefore, this study focuses on how to systematically
incorporate a lineament density map into the existing DRASTIC model based on
the specific range of weight specified by the model; thus, the inclusion of
more geological input will improve the model performance. DRASTIC is an
abbreviation for the parameters used in the model: Depth to water; Recharge;
Aquifer media; Soil media; Topography; Impact to vadose zone; and Conductivity
(hydraulic). The addition of the lineament density map has successfully
improved the performance of the DRASTIC model from 50 to 80% based on the
distribution of 30 producing wells in the Tampin District, where the geology and lineament density play major roles in
determining the potential groundwater area.
Keywords: DRASTIC; groundwater; groundwater potential; lineament
density
Abstrak
Ramalan zon potensi air bawah tanah adalah penting terutamanya di kawasan di
mana air permukaan tidak mencukupi semasa musim kering. Kebelakangan ini, daerah Tampin di Negeri Sembilan telah mengalami masalah kekurangan air dan mengenal pasti sumber air yang lain adalah penting untuk mengekalkan sistem bekalan air yang berterusan kepada penduduk di daerah ini. Oleh itu, dalam kajian ini, gabungan antara model air bawah tanah sedia ada (DRASTIC) berserta dengan peta ketumpatan lineamen digunakan untuk mengenal pasti zon yang berpotensi mengandungi air bawah tanah. DRASTIC adalah singkatan kepada parameter: kedalaman air; pengimbuhan semula; media akuifer; media tanah; topografi; kesan kepada zon vados;
dan konduktiviti (hidraulik). Penambahan peta ketumpatan lineamen kepada model DRASTIC berjaya menambah baik ketepatan model ini daripada 50 ke 80% berdasarkan taburan 30 telaga di Daerah Tampin. Peta potensi air bawah tanah ini menunjukkan zon yang berpotensi terletak di barat, barat daya, timur dan bahagian tengah kawasan kajian. Berdasarkan peta tersebut, geologi dan ketumpatan lineamen memainkan peranan penting dalam penentuan air bawah tanah di Daerah Tampin.
Kata kunci: Air bawah tanah; DRASTIC; ketumpatan lineamen; potensi air bawah tanah
RUJUKAN
Ab Razak, N.H., Praveena,
S.M., Aris, A.Z. & Hashim, Z. 2015. Drinking water studies: A review on
heavy metal, application of biomarker and health risk assessment (a special
focus in Malaysia). Journal of Epidemiology and Global Health 5(4):
297-310.
Al-Bakri,
J.T. & Al-Jahmany Y.Y. 2013. Application of GIS
and remote sensing to groundwater exploration in Al-Wala Basin in Jordan. Journal
of Water Resource and Protection 5(10): 962-971.
Aller,
L., Bennet, T., Lehr, J.H., Petty, R.J. & Hackett, G. 1987. DRASTIC: A
Standardized System for Evaluating Ground Water Pollution Potential using
Hydrogeologic Settings. US Environment Protection Agency. p. 641.
Aller, L., Bennet, T., Lehr, J.H., Petty, R.J.
& Hacket, G. 1985. DRASTIC: A Standardized
System for Evaluating Ground Water Pollution using Hydrological Settings.
Ada, Oklahoma, USA: Prepared by the National Water Well Association for the US
EPA office of Research and Development.
Allocca, V., De Vita, P., Manna, F. &
Nimmo, J.R. 2015. Groundwater recharge assessment at local and episodic scale
in a soil mantled perched karst aquifer in southern Italy. Journal of
Hydrology 529: 843-853.
Aouragh, M.H., Essahlaoui,
A., El Ouali, A., El Hmaidi,
A. & Kamel, S. 2016. Groundwater potential of Middle Atlas plateaus,
Morocco, using fuzzy logic approach, GIS and remote sensing. Geomatics,
Natural Hazards and Risk 8(2): 194-206.
Balakrishnan,
P., Saleem, A. & Mallikarjun, N.D. 2011. Groundwater quality mapping using
geographic information system (GIS): A case study of Gulbarga City, Karnataka,
India. African Journal of Environmental Science and Technology 5(12): 1069-1084.
Barbulescu, A. 2020. Assessing groundwater
vulnerability: DRASTIC and DRASTIC-like methods: A review. Water 12(5):
1356.
Delgado,
A. & Gómez, J.A. 2016. The soil. Physical, chemical and biological
properties. In Principles of Agronomy for Sustainable Agriculture, edited
by Villalobos, F.J. & Fereres, E. Springer, Cham.
pp. 15-26.
Delin, G.N., Healy, R.W., Lorenz, D.L. & Nimmo, J.R.
2007. Comparison of local to regional scale estimates of ground water recharge
in Minnesota, USA. Journal of Hydrology 334(1-2): 231-249.
Deepa,
S., Venkateswaran, S., Ayyandurai,
R., Kannan, R. & Prabhu, M. V.2016. Groundwater
recharge potential zones mapping in upper Manimuktha Sub basin Vellar river Tamil Nadu India using GIS and
remote sensing techniques. Modeling Earth Systems and Environment 2:
1-13.
Department of Agriculture Malaysia. N.D. Reconnaissance
Soil Map District of Tampin. Putrajaya: Department of
Agriculture Malaysia.
Department of Agriculture Malaysia. 1993. Panduan Mengenali Siri-Siri
Tanah Utama di Semenanjung Malaysia. Kuala Lumpur: Department of Agriculture
Malaysia.
Director General of Geological Survey of Malaysia. 1985. Geological Map
of Peninsular Malaysia (1:500,000), 8th ed. Department of Minerals
and Geoscience Malaysia.
Husain,
M.R., Ishak, A.M., Redzuan, N., Van Kalken, T. & Brown, K. 2017. Malaysian National Water
Balance System (NAWABS) for improved river basin management: Case study in the
Muda River Basin. In 37th IAHR World Congress (Kuala Lumpur, 2017). pp.
13-18.
Ismail, N.S. 2014. Empangan Gemencheh Kritikal. http://www.sinarharian.com.my/empangan-gemencheh-kritikal-1.287256. Accessed on 11
November 2017.
Jang, W.S., Engel, B., Harbor, J. & Theller, L. 2017.
Aquifer vulnerability assessment for sustainable groundwater management using
DRASTIC. Water 9(10): 792.
Khan, R. & Jhariya, D.C. 2019. Assessment of
groundwater pollution vulnerability using GIS based modified DRASTIC model in
Raipur City, Chhattisgarh. Journal of the Geological
Society of India 93(3): 293-304.
Kozłowski, M. & Sojka, M. 2019. Applying
a modified DRASTIC model to assess groundwater vulnerability to pollution: A
case study in Central Poland. Polish Journal of Environmental Studies 28(3): 1223-1231.
Kura, N.U., Ramli, M.F., Sulaiman, W.N.A., Ibrahim, S.,
Aris, A.Z. & Mustapha, A. 2013. Evaluation of factors influencing the
groundwater chemistry in a small tropical island of Malaysia. International
Journal Environment Research and Public Health 10(5): 1861-1881.
Malakootian, M. & Nozari,
M. 2020. GIS-based DRASTIC and composite DRASTIC indices for assessing
groundwater vulnerability in the Baghin aquifer,
Kerman, Iran. Natural Hazards Earth System Sciences 20(8): 2351-2363.
Manap, M.A., Nampak, H., Pradhan, B., Lee, S., Sulaiman,
W.N.A. & Ramli, M.F. 2014. Application of probabilistic based frequency
ratio model in groundwater potential mapping using remote sensing data and GIS. Arabian Journal of Geosciences 7(2): 711-724.
Mohamad,
H. & Roslan, N. 2017. Pencirian sifat akuifer dalam batuan granit di Selangor. Sains Malaysiana 46(12): 2331-2338.
Nampak, H., Pradhan, B. & Manap, M.A. 2014.
Application of GIS based data driven evidential belief function model to
predict groundwater potential zonation. Journal of Hydrology 513:
283-300.
Nasiman, S., Zainariah, R. & Firuz, R.M. 1997.
Fracture pattern and its relationship to groundwater in hardrocks of Negeri
Sembilan. Bulletin of the Geological Society of Malaysia 40: 113-118.
Nimmo, J.R., Healy, R.W. & Stonestrom, D.A. 2005.
Aquifer Recharge. In Encyclopedia of Hydrological Science Part 13,
edited by Anderson, M.G. & Bear, J. Groundwater: Chichester: John Wiley & Sons, Ltd. pp. 2229-2246.
Patil, S.G. & Mohite, N.M. 2014. Identification of
groundwater recharge potential zones for a watershed using remote sensing and
GIS. International Journal of Geomatics and Geosciences 4(3): 485-498.
Paul, S. & Das, C.S. 2021. An investigation of
groundwater vulnerability in the North 24 parganas district using DRASTIC and
hybrid-DRASTIC models: A case study. Environmental Advances 5: 100093.
Pramanathan, S. 2000. Soils of Malaysia, Their
Characteristics and Identification. Kuala Lumpur: Academy of
Science Malaysia & Param Agriculture Soil Survey.
Ranhill.
2011. Review of the National Water Resources Study (2000-2050) and
Formulation of National Water Resources Policy. Final Report, Vol. 15. Department
of Irrigation and Drainage, Malaysia.
https://www.water.gov.my/jps/resources/PDF/Hydrology%20Publication/Vol15NegeriSembilan.pdf.
Rawi, N.M., Hairudin, N.S.,
Simon, N., Ern, L.K. & Roslan, N. 2020. Hidrogeologi dan geokimia air bawah tanah di daerah Tampin, Negeri Sembilan,
Malaysia. Sains Malaysiana 49(3): 493-502.
Risser, D.W., Gburek, W.J. & Folmar, G.J. 2005.
Comparison of Methods for Estimating Groundwater Recharge and Base Flow at a
Small Watershed Underlain by Fractured Bedrock in the Eastern United States. US
Geological Survey.
p. 37.
Samsudin, A.R., Tan, C.A., Baharudin, B. & Rahman, M.T.A. 2000. The use of
geoelectrical imaging to study groundwater pollution at Gemenchech waste disposal site, Negeri Sembilan. Bulletin of the Geological Society of
Malaysia 44: 15-20.
Sarup, J., Tiwari, M.K. & Khatediya, V. 2011.
Delineate groundwater prospect zones and identification of artificial
recharge sites using geospatial technique. International Journal of Advance
Technology & Engineering Research 1: 6-20.
Sesser,
B., DiPietro, D., Lawton, R. & Trotta, M. 2011. Sonoma Valley
Groundwater Recharge Potential Mapping Project (Technical report). Sonoma
Ecology Center & Sonoma Country Water Agency SEC
Report No 20100922. p. 25.
Senanayake,
I.P., Dissanayake, D.M.D.O.K., Mayadunna, B.B. & Weerasekera, W.L. 2016. An approach to delineate
groundwater recharge potential sites in Ambalantota,
Sri Lanka using GIS techniques. Geoscience Frontiers 7(1): 115-124.
Shah, S.H.I.A., Yan, J., Ullah, I., Aslam, B., Tariq, A.,
Zhang, L. & Mumtaz, F. 2021. Classification of aquifer vulnerability by
using the DRASTIC index and geo-electrical techniques. Water 13(16):
2144.
Sheriza, M.R., Ainuddin,
N.A., Hazandy, A.H. & Zulhaidi,
M.S.H. 2011. Annual rainfall estimation based on two different methods. Journal
of Environmental Hydrology 19(24): 1-9.
Shirazi,
S.M., Adham, M.I., Zardari,
N.H., Ismail, Z., Imran, H.M. & Mangrio, M.A.
2015. Groundwater quality and hydrogeological characteristics of Malacca state
in Malaysia. Journal of Water and Land Development 24(I-III): 11-19.
Srivastava,
P.K. & Bhattacharya, A.K. 2006. Groundwater assessment through an
integrated approach using remote sensing, GIS and resistivity techniques: A
case study from a hard rock terrain. International Journal of Remote Sensing 27(20): 4599-4620.
Thapa,
R., Gupta, S., Guin, S. & Kaur, H. 2017.
Assessment of groundwater potential zones using multi-influencing factor (MIF)
and GIS: A case study from Birbhum district, West Bengal. Applied Water
Science 7(7): 4117-4131.
Thapa, R., Gupta, S., Guin, S. & Kaur, H. 2018.
Sensitivity analysis and mapping the potential groundwater vulnerability zones
in Birbhum district, India: A comparative approach between vulnerability
models. Water Science 32(1): 44-66.
Ti, L.H. & Facon, T. 2001. From vision to action: A
synthesis of experiences in Southeast Asia. The FAO-ESCAP Pilot Project on
National Water Visions.
Utusan Malaysia. 2016. Paras Air di Empangan Gemencheh
di Bawah Paras Kritikal. http://www.utusan.com.my/berita/nasional/paras-air-di-empangan-gemencheh-di-bawah-paras-kritikal-1.184683. Accessed on 11
November 2017.
Venkateswaran, S. & Ayyandurai,
R. 2015. Groundwater potential zoning in Upper Gadilam River Basin Tamil Nadu. Aquatic Procedia 4: 1275-1282.
Yeh,
H.F., Cheng, Y.S., Lin, H.I. & Lee, C.H. 2016. Mapping groundwater recharge
potential zone using a GIS approach in Hualian River, Taiwan. Sustainable
Environment Research 26(1): 33-43.
Yeh,
H.F., Lee, C.H., Hsu, K.C. & Chang, P.H. 2009. GIS for the assessment of
the groundwater recharge potential zone. Environmental Geology 58(1):
185-195.
*Pengarang untuk surat-menyurat; email: norbsn@ukm.edu.my
|