Sains Malaysiana 51(7)(2022): 2147-2157

http://doi.org/10.17576/jsm-2022-5107-17

 

Repeated Administration of Low Dose Isoprenaline on the Rat’s Cardiovascular System

(Administrasi Berulang Isoprenalina Dos Rendah pada Sistem Kardiovaskular Tikus)

 

RAJASEGAR ANAMALLEY1,4, LOGESWARY RAJASSAGERAN1, YASAASWINI APPAROO1, MUHAMMAD HAFFIZ JAURI3, YUSOF KAMISAH2, NURHANAN MURNI YUNOS3 & SATIRAH ZAINALABIDIN1,*

 

1Programme of Biomedical Science, Centre of Toxicology and Health Risk Study (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Federal Territory, Malaysia

2Department of Pharmacology, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras Kuala Lumpur, Federal Territory, Malaysia

3Natural Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor Darul Ehsan, Malaysia

4Faculty of Health and Life Sciences, Management and Science University, University Drive, off Persiaran Olahraga, 40100 Shah Alam, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 21 September 2021/Diterima: 28 Disember 2021

 

Abstract

Isoprenaline (ISO) at high doses can cause severe stress to myocardium resulting in an infarct-like necrosis in rats. However, its effects at repeatedly low dose exposure on heart, kidney and aorta are still unclear. Hence, this study was aimed to investigate the effects of repeated administration of low dose ISO on the organs in rats by using Langendorff-perfused isolated hearts, ELISA kits, qPCR and histopathology techniques. Male Wistar rats (n=24) were randomly divided into three groups which were given 5 or 10 mg/kg/day of ISO (ISO 5 and ISO 10, respectively), or normal saline (control) subcutaneously for 14 days. Blood pressure was recorded at day-0, 7 and 14. Heart, aorta, kidneys, and blood were then collected. ISO at both doses significantly increased the heart weight and blood pressure (p<0.05), while the heart rate was significantly decreased (p<0.05). ISO also increased serum troponin and NT-pro-BNP, and decreased vascular relaxation dose-dependently. Group ISO 10 showed significantly increased cardiomyocyte area and cardiac collagen content, as well as reduced serum nitrite (p<0.05). However, ISO at both doses did not affect the cardiac mechanical function, renal oxidative stress, inflammation, as well as renal gene expressions of angiotensin-converting enzyme and angiotensin II type 1 receptor. In conclusion, repeated low dose of ISO significantly causes myocardial injury and reduces vascular function in rats. The findings imply that this rat model could be a suitable model of heart injury without the complication of renal injury.

 

Keywords: β-adrenoceptor; cardiac hypertrophy; fibrosis; isoprenaline; vascular fibrosis

 

Abstrak

Aruhan isoprenalina (ISO) pada dos tinggi boleh menyebabkan tekanan yang teruk pada miokardium lalu mengakibatkan nekrosis pada jantung tikus. Walau bagaimanapun, kesan pendedahan pada dos rendah berulangan pada jantung, ginjal dan aorta masih belum jelas diketahui. Oleh itu, penyelidikan ini bertujuan untuk mengkaji kesan pemberian ISO dos rendah secara berulangan pada organ-organ tikus dengan menggunakan teknik jantung terpisah yang diperfusi Langendorff, kit ELISA, qPCR dan histopatologi. Tikus Wistar jantan (n=24) dibahagikan secara rawak kepada tiga kumpulan iaitu 5 atau 10 mg/kg/hari suntikan ISO (ISO 5 dan ISO 10), atau salina normal (kawalan) secara subkutan selama 14 hari. Tekanan darah diambil pada hari ke-0, 7 dan 14. Organ jantung, aorta, ginjal dan darah kemudian dibedah. Hasil kajian mendapati aruhan ISO pada kedua-dua dos tersebut telah meningkatkan berat jantung dan tekanan darah dengan ketara (p<0.05), sementara kadar denyutan jantung pula menurun dengan ketara (p<0.05). ISO juga meningkatkan troponin serum dan NT-pro-BNP dan penurunan relaksasi vaskular. Hanya ISO 10 berupaya mengaruh peningkatan kawasan  kardiomiosit dan jumlah kolagen jantung, serta penurunan nitrit serum (p<0.05). ISO pada kedua-dua dos tersebut tidak pula mempengaruhi fungsi mekanikal jantung, tekanan oksidatif ginjal, keradangan, serta ekspresi gen penukaran enzim angiotensin dan reseptor angiotensin II Jenis 1. Kesimpulannya, aruhan dos rendah ISO yang berulang menyebabkan kecederaan miokardium dan mengurangkan fungsi vaskular pada tikus. Hasil kajian ini menunjukkan bahawa model tikus ini boleh dijadikan sebagai satu model tikus dengan kegagalan jantung tanpa sebarang komplikasi pada buah pinggang.

 

Kata kunci: β adrenoseptor; fibrosis salur darah; kardiak hipertrofi; fibrosis; isoprenalina

 

RUJUKAN

Ahmad, A., Sattar, M.Z., Rathore, H.A., Khan, S.A., Lazhari, M.A., Hashmi, F., Abdullah, N.A. & Johns, E.J. 2012. Impact of isoprenaline and caffeine on development of left ventricular hypertrophy and renal hemodynamic in Wistar Kyoto rats. Acta Poloniae Pharmaceutica 72(5): 1015-1026.

Ali, S.S., Mohamed, S.F.A., Rozalei, N.H., Boon, Y.W. & Zainalabidin, S. 2019. Anti-fibrotic actions of Roselle extract in rat model of myocardial infarction. Cardiovascular Toxicology 19(1): 72-81.

Allawadhi, P., Khurana, A., Sayed, N., Kumari, P. & Godugu, C. 2018. Isoproterenol‐induced cardiac ischemia and fibrosis: Plant‐based approaches for intervention. Phytotherapy Research 32(10): 1908-1932.

Casserly, B. & Klinger, J. 2010. The clinical utility of brain natriuretic peptide in pulmonary arterial hypertension. PVRI Review 2(2): 85.

Chan, J.S., Wang, T.T., Zhang, S.L., Chen, X. & Carrière, S. 2000. Catecholamines and angiotensinogen gene expression in kidney proximal tubular cells. Molecular and Cellular Biochemistry 212(1): 73-79.

Che, Y., Shen, D.F., Wang, Z.P., Jin, Y.G., Wu, Q.Q., Wang, S.S. & Yuan, Y. 2019. Protective role of berberine in isoprenaline-induced cardiac fibrosis in rats. BMC Cardiovascular Disorders 19(1): 1-11.

Colombo, P.C., Ganda, A., Lin, J., Onat, D., Harxhi, A., Iyasere, J.E., Uriel, N. & Cotter, G. 2012. Inflammatory activation: Cardiac, renal, and cardio-renal interactions in patients with the cardiorenal syndrome. Heart Failure Reviews 17(2): 177-190.

Combet, S., Miyata, T., Moulin, P., Pouthier, D., Goffin, E. & Devuyst, O. 2000. Vascular proliferation and enhanced expression of endothelial nitric oxide synthase in human peritoneum exposed to long-term peritoneal dialysis. Journal of the American Society of Nephrology 11(4): 717-728.

Dalal, S., Foster, C.R., Das, B.C., Singh, M. & Singh, K. 2012. Β-adrenergic receptor stimulation induces endoplasmic reticulum stress in adult cardiac myocytes: Role in apoptosis. Molecular and Cellular Biochemistry 364(1): 59-70.

De Ponte, M.C., Casare, F.A.M., Costa-Pessoa, J.M., Cardoso, V.G., Malnic, G., Mello-Aires, M., Volpini, R.A., Thieme, K. & Oliveira-Souza, M. 2017. The role of Β-Adrenergic overstimulation in the early stages of renal injury. Kidney and Blood Pressure Research 42(6): 1277-1289.

Govindasami, S., Uddandrao, V.V., Raveendran, N. & Sasikumar, V. 2020. Therapeutic potential of biochanin-A against isoproterenol-induced myocardial infarction in rats. Cardiovascular & Hematological Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Cardiovascular & Hematological Agents) 18(1): 31-36. 

Hasić, S., Jadrić, R., Kiseljaković, E., Mornjaković, Z. & Winterhalter-Jadrić, M. 2007.   Troponin T and histological characteristics of rat myocardial infarction induced by Isoproterenol. Bosnian Journal of Basic Medical Sciences 7(3): 212-217.

Hoogwerf, B.J., Laine, D.C. & Greene, E. 1986. Urine C-peptide and creatinine (Jaffe method) excretion in healthy young adults on varied diets: Sustained effects of varied carbohydrate, protein, and meat content. The American Journal of Clinical Nutrition 43(3): 350-360.

Huang, D., Ke, J., Zhao, A., Yang, Z., Liang, D., Pan, J. & Chen, J. 2014. Establishment and evaluation of isoproterenol induced chronic heart failure and cardiac remodeling model in rats: An experimental study. International Journal of Cardiovascular and Cerebrovascular Disease 2(5): 45-50.

Katsarou, M.S., Karathanasopoulou, A., Andrianopoulou, A., Desiniotis, V., Tzinis, E., Dimitrakis, E. & Drakoulis, N. 2018. Beta 1, beta 2 and beta 3 adrenergic receptor gene polymorphisms in a southeastern European population. Frontiers in Genetics 9: 560.

Krenek, P., Kmecova, J., Kucerova, D., Bajuszova, Z., Musil, P., Gazova, A. & Kyselovic, J. 2009. Isoproterenol‐induced heart failure in the rat is associated with nitric oxide‐dependent functional alterations of cardiac function. European Journal of Heart Failure 11(2): 140-146.

Lumsden, N.G., Khambata, R.S. & Hobbs, A.J. 2010. C-type natriuretic peptide (CNP): Cardiovascular roles and potential as a therapeutic target. Current Pharmaceutical Design 16(37): 4080-4088.

Magid, R., Murphy, T. & Galis, Z.S. 2003. Expression of matrix metalloproteinase-9 in endothelial cells is differentially regulated by shear stress role of c-Myc. Journal of Biological Chemistry 278(35): 32994-32999.

Manjunatha, S., Shaik, A.H., Al Omar, S.Y., Mohammad, A. & Kodidhela, L.D. 2020. Combined cardio-protective ability of syringic acid and resveratrol against isoproterenol induced cardio-toxicity in rats via attenuating NF-kB and TNF-α pathways. Scientific Reports 10(1): 1-13.

Mohammed Yusof, N.L., Zainalabidin, S., Mohd Fauzi, N. & Budin, S.B. 2018. Hibiscus sabdariffa (Roselle) polyphenol-rich extract averts cardiac functional and structural abnormalities in type 1 diabetic rats. Applied Physiology, Nutrition, and Metabolism 43(12): 1224-1232.

Mozayani, A. & Raymon, L. 2003. Handbook of Drug Interactions: A Clinical and Forensic Guide. Springer Science & Business Media.

Nichtova, Z., Novotova, M., Kralova, E. & Stankovicova, T. 2012. Morphological and functional characteristics of models of experimental myocardial injury induced by isoproterenol. Gen. Physiol. Biophys. 31(2): 141-151.

Palipoch, S. 2013. A review of oxidative stress in acute kidney injury: Protective role of medicinal plants-derived antioxidants.  African Journal of Traditional, Complementary and Alternative Medicines 10(4): 88-93.

Patlolla, A.K., Kumari, S.A., Madhusudhanachary, P., Turner, T. & Tchounwou, P.B. 2018. Biochemical and histopathological evaluation of Al2O3 nanomaterials in kidney of Wistar rats. Current Topics in Biochemical Research 19: 1-12.

Rajendran, P., Rengarajan, T., Thangavel, J., Nishigaki, Y., Sakthisekaran, D., Sethi, G. & Nishigaki, I. 2013. The vascular endothelium and human diseases. International Journal of Biological Sciences 9(10): 1057-1069.

Si, L.Y.N., Yusof, K., Ramalingam, A., Lim, Y.C., Budin, S.B. & Zainalabidin, S. 2017. Roselle supplementation prevents nicotine-induced vascular endothelial dysfunction and remodelling in rats. Applied Physiology, Nutrition, and Metabolism 42: 765-772.

Yu, F., Kamada, H., Niizuma, K., Endo, H. & Chan, P.H. 2008. Induction of MMP-9 expression and endothelial injury by oxidative stress after spinal cord injury. Journal of Neurotrauma 25(3): 184-195.

Zhao, L., Wu, D., Sang, M., Xu, Y., Liu, Z. & Wu, Q. 2017. Stachydrine ameliorates isoproterenol-induced cardiac hypertrophy and fibrosis by suppressing inflammation and oxidative stress through inhibiting NF-κB and JAK/STAT signaling pathways in rats. International Immunopharmacology 48: 102-109.

Zhong, J., Guo, D., Chen, C.B., Wang, W., Schuster, M., Loibner, H., Penninger, J.M., Scholey, J.W., Kassiri, Z. & Oudit, G.Y. 2011. Prevention of angiotensin II–mediated renal oxidative stress, inflammation, and fibrosis by angiotensin-converting enzyme 2. Hypertension 57(2): 314-322.

Zhou, R., Ma, P., Xiong, A., Xu, Y., Wang, Y. & Xu, Q. 2017. Protective effects of low‐dose rosuvastatin on isoproterenol‐induced chronic heart failure in rats by regulation of DDAH‐ADMA‐NO pathway. Cardiovascular Therapeutics 35(2): e12241.

 

*Pengarang untuk surat-menyurat; email: satirah@ukm.edu.my

     

sebelumnya