Sains Malaysiana 51(8)(2022):
2415-2424
http://doi.org/10.17576/jsm-2022-5108-06
Hot Water
Extract from Saccharomyces cerevisiae Scavenges DPPH and Reduces Senescence Associated b-Galactosidase (Sa-b-Gal) in Human Dermal Fibroblasts
(Ekstrak Air Panas daripada Saccharomyces cerevisiae Menghimpun
DPPH dan Mengurangkan b-Galaktosidase (Sa-b-Gal) Berkait Senesensdalam Fibroblas Dermal Manusia)
KHAIZURIN TAJUL ARIFIN*, NOOR IKHWAN
SHANSUDDIN, NORWAHIDAH ABDUL KARIM & SUZANA MAKPOL
Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia
Medical Centre, 56000 Kuala Lumpur, Federal Territory, Malaysia
Diserahkan: 27 Ogos 2020/Diterima: 25 Februari 2022
Abstract
Extracts from Saccharomyces cerevisiae are
incorporated in a lot of cosmetic
products on the market, but the benefits of the extracts lack scientific reports. We tested the toxicity and
anti-senescent activity of an extract from S. cerevisiae on an in
vitro model, the human dermal fibroblast (HDF) cell culture. We chronicled
the development of the extraction method and the subsequent biochemical assays.
We used two extraction methods which were hot water extraction and rapid spin.
The optimum duration and growth phase to harvest S. cerevisiae were
determined by 2,2-diphenyl-1-picrylhydrazyl
(DPPH) assay, which also proved that the extracts exhibited antioxidant
activity. Hot water extract
showed a higher antioxidant activity, and not toxic to HDF. When
subjected to senescence-associated β-galactosidase (SA-β-Gal) assay,
the hot water extract significantly reduced the expression of SA-β-Gal in
pre-senescent (passage 20, 30 <
population doubling < 40) and senescent (passage 30, population doubling
> 50) HDF. In conclusion, S. cerevisiae hot water extract
possessed antioxidant activity by scavenging DPPH, and anti-senescent activity
by reducing the expression of SA-β-Gal in pre-senescent and senescent HDF.
Keywords: Ageing; DPPH; Saccharomyces cerevisiae;
senescence
Abstrak
Ekstrak daripada Saccharomyces cerevisiae digabungkan dalam banyak produk kosmetik di pasaran. Ia dikatakan mempunyai kesan yang baik pada kulit manusia, tetapi masih kurang laporan saintifik tentang keberkesanan ekstraknya. Kami telah menguji kesan ketoksikan dan aktiviti anti-penuaan bagi ekstrak mentah daripada S.
cerevisiae pada model in vitro,
kultur sel fibroblas dermal manusia (HDF). Kami melaporkan pembangunan kaedah pengekstrakan dan asai biokimia seterusnya. Kami menggunakan dua kaedah pengekstrakan iaitu pengekstrakan air panas dan putaran cepat. Tempoh dan fasa pertumbuhan optimum untuk menuai S. cerevisiae ditentukan dengan asai 2,2-difenil-1-pikrilhidrazil (DPPH), yang juga membuktikan bahawa ekstrak mentah menunjukkan aktiviti antioksidan. Ekstrak air panas menunjukkan aktiviti antioksidan yang lebih tinggi dan tidak toksik kepada HDF. Apabila dilakukan asai β-galaktosidase berkait penuaan (SA-β-Gal), ekstrak air panas mengurangkan ekspresi SA-β-Gal dalam HDF pra-senesens (pasaj 20, 30 < populasi berganda < 40) dan senesens (pasaj 30, populasi berganda > 50). Kesimpulannya, ekstrak air panas S. cerevisiae mempunyai aktiviti antioksidan dengan menghimpun DPPH dan aktiviti anti-senesens dengan mengurangkan ekspresi SA-β-Gal dalam HDF pra-senesens dan senesens.
Kata kunci: DPPH; penuaan; Saccharomyces cerevisiae;
senses
RUJUKAN
Arasi, M.A.S.A.G., Rao, M.G. & Bagyalakshmi,
J. 2016. The comparison and analysis of two extraction methods for
polysaccharides in Psidium guajava L. fruits. Indian
Journal of Pharmaceutical Education and Research 50(3s): S218-S224.
Blagosklonny, M.V. 2014. Geroconversion:
Irreversible step to cellular senescence. Cell Cycle 13(23): 3628-3635.
Boucherie, H. 1985. Protein synthesis during
transition and stationary phases under glucose limitation in Saccharomyces
cerevisiae. Journal of Bacteriology 161(1): 385-392.
Cao, D., Zhao, M., Wan, C., Zhang,
Q., Tang, T., Liu, J., Shao, Q., Yang, B., He, J. & Jiang, C. 2019. Role of
tea polyphenols in delaying hyperglycemia-induced senescence in human
glomerular mesangial cells via miR-126/Akt–p53–p21 pathways. International
Urology and Nephrology 51(6): 1071-1078.
Choi, S.I., Lee, J.S., Lee, S., Cho, B.Y., Choi, S.H.,
Han, X., Sim, W., Kim, Y., Lee, B., Kang, I. & Lee, O. 2019. Protective
effects and mechanisms of Pourthiaea villosa(Thunb.) Decne. extract on hydrogen peroxide-induced skin ageing in
human dermal fibroblasts. Journal of Medicinal Food 22(8): 841-850.
Chowdhury, S.R., Jing, L.S., Zolkafli,
M.N.H., Zarin, N.A.B.M.A., Abdullah, W.A.B.W., Md Mohtar, N.A., Maarof, M. &
Abdullah, N.A.H. 2019. Exploring the potential of dermal fibroblast conditioned
medium on skin wound healing and anti-ageing. Sains Malaysiana48(3): 637-644.
Cui, Z., Jiamei, Y., Yushu, Y., Xia, F., Haiyan, Y., Zhang,
D., Qiong, C. & Guangwei, Z. 2021. Effect of the traditional chinese
medicine Pinggan-Qianyang decoction on SIRT1-PTEN signaling in vascular aging in spontaneously
hypertensive rats. Hypertension Research 44: 1087-1098.
Dash, P. & Ghosh, G. 2017. Amino
acid composition, antioxidant and functional properties of protein hydrolysates
from Cucurbitaceae seeds. Journal of Food Science and Technology 54(13):
4162-4172.
Despres, J., Ramdani, Y., di
Giovanni, M., Bénard, M., Zahid, A., Montero-Hadjadje, M., Yvergnaux, F., Saguet, T., Driouich, A. &
Follet-Gueye, M.L. 2019. Replicative senescence of
human dermal fibroblasts affects structural and functional aspects of the Golgi
apparatus. Experimental Dermatology 28(8): 922-932.
Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scorrt, G., Roskelley, C.,
Medrano, E.E., Linskensi, M., Rubeljii,
I., Pereira-Smithii, O., Peacocket,
M. & Campisiet, J. 1995. A biomarker that
identifies senescent human cells in culture and in ageing skin in vivo. Proceedings
of the National Academy of Sciences 92(20): 9363-9367.
Gallo, D., Dillemans, M., Allardin, D., Priem, F. & van Nedervelde, L. 2014. Trophic effect of a methanol
yeast extract on 3T3 fibroblast cells. Journal of Cosmetic Science 65(6):
389-401.
Gaspar, L.R., Camargo, F.B., Gianeti,
M.D. & Maia Campos, P.M.B.G. 2008. Evaluation of dermatological effects of
cosmetic formulations containing Saccharomyces cerevisiae extract and
vitamins. Food and Chemical Toxicology 46(11): 3493-3500.
Gazi, M.R., Kanda, K. & Kato, F. 2004.
Optimisation of various cultural conditions on growth and antioxidant activity
generation by Saccharomyces cerevisiae IFO 2373. Journal of
Biological Sciences 4(2): 224-228.
Gerland, L.M., Peyrol, S., Lallemand, C., Branche, R., Magaud, J.P. & Ffrench, M.
2003. Association of increased autophagic inclusions labelled for
β-galactosidase with fibroblastic ageing. Experimental Gerontology 38(8):
887-895.
Gu, C. & Pan, S. 2014. The comparison and analysis
of three extraction methods for polysaccharides in Purslane. Journal of Food
and Nutrition Research 2(7): 401-405.
Hariton, F., Xue, M., Rabbani, N.,
Fowler, M. & Thornalley, P.J. 2018. Sulforaphane
delays fibroblast senescence by curbing cellular glucose uptake, increased
glycolysis, and oxidative damage. Oxidative Medicine and Cellular Longevity 2018: 5642148.
Harman, D. 1956. Ageing: A theory based on free
radical and radiation chemistry. Journal of Gerontology 11(3): 298-300.
Huh, W.K., Lee, B.H., Kim, S.T., Kim,
Y.R., Rhie, G.E., Baek, Y.W., Hwang, C.S., Lee, J.S. & Kang, S.O. 1998.
D-erythroascorbic acid is an important antioxidant molecule in Saccharomyces
cerevisiae. Molecular Microbiology 30(4): 895-903.
Jaafar, F., Abdullah, A. & Makpol,
S. 2018. Cellular uptake and bioavailability of tocotrienol-rich fraction in
SIRT1-inhibited human diploid fibroblasts. Scientific Reports 8(1):
10471.
Ju, C-C., Huang, J.L., Tsai, H.J., Wang, S.L., Kuo,
M.L. & Yao, T.C. 2021. Particulate matter causes telomere shortening and
increase in cellular senescence markers in human lung epithelial cells. Ecotoxicology
and Environmental Safety 222: 112484.
Khor, S.C., Ngah, W.Z.W.,
Yusof, Y.A.M., Karim, N.A. & Makpol, S. 2017.
Tocotrienol-rich fraction ameliorates antioxidant defense mechanisms and improves replicative senescence-associated oxidative stress in
human myoblasts. Oxidative Medicine and Cellular Longevity 2017:
3868305.
Kim, I.S., Yang, M.R., Lee, O.H.
& Kang, S.N. 2011. Antioxidant activities of hot water extracts from
various spices. International Journal of Molecular Sciences 12(6): 4120-4131.
Kim, K.S. & Yun, H.S. 2006. Production of soluble
β-glucan from the cell wall of Saccharomyces cerevisiae. Enzyme
and Microbial Technology 39(3): 496-500.
Kogan, G., Staško, A., Bauerová, K., Polovka, M., Šoltés, L., Brezová, V., Navarová, J. & Mihalová, D.
2005. Antioxidant properties of yeast (1→3)-β-D-glucan studied by
electron paramagnetic resonance spectroscopy and its activity in the adjuvant
arthritis. Carbohydrate Polymers 61(1): 18-28.
Lee, Y.T., Puligundla, P.
& Schwarz, P.B. 2017. Molecular weight, solubility, and viscosity of
β-glucan preparations from barley pearling byproducts. Sains Malaysiana46(5):
713-718.
Li, Y., Zhang, Y., Liua, M.,
Qin, Y. & Liu, Y. 2019. Saccharomyces cerevisiae isolates with
extreme hydrogen sulfide production showed different
oxidative stress resistances responses during wine fermentation by RNA
sequencing analysis. Food Microbiology 79: 147-155.
Lipetz, J. & Cristofalo, V. J.
1972. Ultrastructural changes accompanying the ageing of human diploid cells in
culture. Journal of Ultrasructure Research 39(1-2):
43-56.
Liu, X.Y., Wang, Q., Cui, S.W. & Liu, H.Z. 2008. A
new isolation method of β-D-glucans from spent Saccharomyces cerevisiae. Food Hydrocolloids 22(2): 239-247.
Maarof, M., Lokanathan, Y., Ruszymah, H.I., Saim, A. &
Chowdhury, S.R. 2018. Proteomic analysis of human dermal fibroblast conditioned
medium (DFCM). The Protein Journal 37(6): 589-607.
Machová, E. & Bystrický, S.
2013. Antioxidant capacities of mannans and glucans are related to their
susceptibility of free radical degradation. International Journal of
Biological Macromolecules 61: 308-311.
Maharajan, N., Ganesan, C.D., Moon,
C., Jang, C.H., Oh, W.K. & Cho, G.W. 2021. Licochalcone D ameliorates
oxidative stress‐induced senescence via AMPK activation. International
Journal of Molecular Sciences 22(14): 7324.
Makpol, S., Zainuddin, A., Chua,
K., Yusof, Y. & Ngah, W. 2012. Gamma-tocotrienol
modulation of senescence-associated gene expression prevents cellular ageing in
human diploid fibroblasts. Clinics 67(2): 135-143.
Makpol, S., Yeoh, T.W., Ruslam,
F.A.C., Arifin, K.T. & Yusof, Y.A.M. 2013. Comparative effect of Piper betle, Chlorella vulgaris and tocotrienol-rich
fraction on antioxidant enzymes activity in cellular ageing of human diploid
fibroblasts. BMC Complementary and Alternative Medicine 13(1): 210.
Marceau, N., Goyette, R., Deschênes,
J. & Valet, J.P. 1980. Morphological differences between epithelial and
fibroblast cells in rat liver cultures, and the roles of cell surface
fibronectin and cytoskeletal element organization in cell shape. Annals of
the New York Academy of Sciences 349(1): 138-152.
Michopoulou, A. & Rousselle, P. 2015. How do epidermal matrix
metalloproteinases support re-epithelialization during skin healing? European
Journal of Dermatology 25(1): 33-42.
Moon, K.C., Yang, J.P., Lee, J.S., Jeong,
S.H., Dhong, E.S. & Han, S.K. 2019. Effects of
ultraviolet irradiation on cellular senescence in keratinocytes versus
fibroblasts. The Journal of Craniofacial Surgery 30(1): 270-275.
Mülleder, M., Calvani, E., Alam, M.T., Wang, R.K.,
Eckerstorfer, F., Zelezniak, A. & Ralser, M. 2016. Functional metabolomics
describes the yeast biosynthetic regulome. Cell 167(2): 553-565.
Péterszegi, G., Isnard, N., Robert,
A.M. & Robert, L. 2003. Studies on skin ageing. Preparation and properties
of fucose-rich oligo- and polysaccharides. Effect on fibroblast proliferation
and survival. Biomedicine and Pharmacotherapy 57(5-6): 87-94.
Rubin, E. & Reisner, H.M. 2014. Essentials of
Rubin’s Pathology. 6th ed. Philadelphia: Wolters Kluwer Health/Lippincott
Williams & Wilkins.
Severino, J., Allen, R.G., Balin,
S., Balin, A. & Cristofalo,
V.J. 2000. Is β-galactosidase staining a marker of senescence in vitro and in vivo? Experimental Cell Research 257(1): 162-171.
She,
X., Calderone, R., Kruppa, M., Lowman, D., Williams,
D., Zhang, L., Gao, Y., Khamooshi, K., Liu, W. &
Li, D. 2016. Cell wall N-linked mannoprotein biosynthesis requires
Goa1p, a putative regulator of mitochondrial complex I in Candida albicans. PLoS ONE 11(1): e0147175.
Son, H.J., Bae, H.C., Kim, H.J., Lee, D.H., Han, D.W.
& Park, J.C. 2005. Effects of β-glucan on proliferation and migration
of fibroblasts. Current Applied Physics 5(5): 468-471.
Sorrell, J.M., Baber, M.A. & Caplan, A.I. 2007.
Clonal characterization of fibroblasts in the superficial layer of the adult
human dermis. Cell and Tissue Research327(3):
499-510.
Starr, J.M. & Starr, R.J. 2014. Skin aging and oxidative
stress. In Aging: Oxidative Stress and Dietary Antioxidants, edited by
Preedy, V.R. London: Academic Press. pp. 15-22.
Tajul Arifin, K., Goh, T.S., Roslan,
M.W.Q., Mussin, B.B., Amir, S.A., Abdul Jalil, N., Lee, P.J. & Winston, R.S. 2019. Tocotrienol-rich fraction (TRF)
improves the viability of wild-type Saccharomyces cerevisiae in the
initial stationary phase. Medicine and Health 14(1): 106-117.
Tan, J., Jaafar, F. & Makpol,
S. 2018. Proteomic profiling of senescent human diploid fibroblasts treated
with gamma-tocotrienol. BMC Complementary and Alternative Medicine 18(1):
314.
Tracy, L.E., Minasian, R.A.
& Caterson, E.J. 2016. Extracellular matrix and
dermal fibroblast function in the healing wound. Advances in Wound Care 5(3):
119-136.
Tsoukalas, D., Fragkiadaki, P.,
Docea, A.O., Alegakis, A.K., Sarandi, E., Thanasoula, M., Spandidos, D.A.,
Tsatsakis, A., Razgonova, M.P. &
Calina, D. 2019. Discovery of potent telomerase activators: Unfolding new
therapeutic and anti-aging perspectives. Molecular Medicine Reports 20(4): 3701-3708.
Wang,
H., Zhang, S., Zhai, L., Sun, L., Zhao, D., Wang, Z.
& Li, X. 2021. Ginsenoside extract from ginseng extends lifespan and health
span in Caenorhabditis elegans. Food and Function 12(15):
6793-6808.
Wei, D., Zhang, L., Williams, D.L. & Browder, I.W.
2002. Glucan stimulates human dermal fibroblast collagen biosynthesis through a
nuclear factor-1 dependent mechanism. Wound Repair and Regeneration 10(3):
161-168.
Wu, D.T., Zhao, Y., Guo, H., Gan, R.,
Peng, L., Zhao, G. & Zou, L. 2021. Physicochemical and biological
properties of polysaccharides from Dictyophora indusiata prepared by
different extraction techniques. Polymers 13(14): 2357.
Xian, D., Guo, M., Xu, J., Yang, Y.,
Zhao, Y. & Zhong, J. 2021. Current evidence to support the therapeutic
potential of flavonoids in oxidative stress-related dermatoses. Redox
Report: Communications In Free Radical Research 26(1): 134-146.
Xu, J., Hou, H., Hu, J. & Liu, B.
2018. Optimized microwave extraction, characterization and antioxidant capacity
of biological polysaccharides from Eucommia ulmoides Oliver leaf. Scientific
Reports 8(1): 6561.
Yusof, Y.A.M., Saad, S.M., Makpol,
S., Shamaan, N.A. & Ngah,
W.Z.W. 2010. Hot water extract of Chlorella vulgaris induced DNA damage
and apoptosis. Clinics 65(12): 1371-1377.
Zarei, O., Dastmalchi, S. & Hamzeh-Mivehroud, M. 2016. A simple and rapid protocol for
producing yeast extract from Saccharomyces cerevisiae suitable for
preparing bacterial culture media. Iranian Journal of Pharmaceutical
Research 15(4): 907-913.
Zhang, Z., Lv, G., He, W.,
Shi, L., Pan, H. & Fan, L. 2013. Effects of extraction methods on the
antioxidant activities of polysaccharides obtained from Flammulina velutipes. Carbohydrate Polymers 98(2):
1524-1531.
Zhong, H., Hong, C., Han, Z., Hwang,
S.J., Kim, B., Xu, Z., Lee, J., Hoon Kim, K., Jin, M.H. & Zou, C. 2019.
Erjingwan extracts exert antiaging effects of skin through activating Nrf2 and
inhibiting NF-κB. Evidence-based Complementary and Alternative Medicine 2019: 5976749.
*Pengarang untuk surat-menyurat; email: khaizurin.tajul.arifin@ppukm.ukm.edu.my
|