Sains Malaysiana 51(8)(2022): 2415-2424

http://doi.org/10.17576/jsm-2022-5108-06

 

Hot Water Extract from Saccharomyces cerevisiae Scavenges DPPH and Reduces Senescence Associated b-Galactosidase (Sa-b-Gal) in Human Dermal Fibroblasts

(Ekstrak Air Panas daripada Saccharomyces cerevisiae Menghimpun DPPH dan Mengurangkan b-Galaktosidase (Sa-b-Gal) Berkait Senesensdalam Fibroblas Dermal Manusia)

 

KHAIZURIN TAJUL ARIFIN*, NOOR IKHWAN SHANSUDDIN, NORWAHIDAH ABDUL KARIM & SUZANA MAKPOL

 

 Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000 Kuala Lumpur, Federal Territory, Malaysia

 

Diserahkan: 27 Ogos 2020/Diterima: 25 Februari 2022

 

Abstract

Extracts from Saccharomyces cerevisiae are incorporated in a lot of cosmetic products on the market, but the benefits of the extracts lack scientific reports. We tested the toxicity and anti-senescent activity of an extract from S. cerevisiae on an in vitro model, the human dermal fibroblast (HDF) cell culture. We chronicled the development of the extraction method and the subsequent biochemical assays. We used two extraction methods which were hot water extraction and rapid spin. The optimum duration and growth phase to harvest S. cerevisiae were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, which also proved that the extracts exhibited antioxidant activity. Hot water extract showed a higher antioxidant activity, and not toxic to HDF. When subjected to senescence-associated β-galactosidase (SA-β-Gal) assay, the hot water extract significantly reduced the expression of SA-β-Gal in pre-senescent (passage 20, 30 < population doubling < 40) and senescent (passage 30, population doubling > 50) HDF. In conclusion, S. cerevisiae hot water extract possessed antioxidant activity by scavenging DPPH, and anti-senescent activity by reducing the expression of SA-β-Gal in pre-senescent and senescent HDF.

 

Keywords: Ageing; DPPH; Saccharomyces cerevisiae; senescence

 

Abstrak

Ekstrak daripada Saccharomyces cerevisiae digabungkan dalam banyak produk kosmetik di pasaran. Ia dikatakan mempunyai kesan yang baik pada kulit manusia, tetapi masih kurang laporan saintifik tentang keberkesanan ekstraknya. Kami telah menguji kesan ketoksikan dan aktiviti anti-penuaan bagi ekstrak mentah daripada S. cerevisiae pada model in vitro, kultur sel fibroblas dermal manusia (HDF). Kami melaporkan pembangunan kaedah pengekstrakan dan asai biokimia seterusnya. Kami menggunakan dua kaedah pengekstrakan iaitu pengekstrakan air panas dan putaran cepat. Tempoh dan fasa pertumbuhan optimum untuk menuai S. cerevisiae ditentukan dengan asai 2,2-difenil-1-pikrilhidrazil (DPPH), yang juga membuktikan bahawa ekstrak mentah menunjukkan aktiviti antioksidan. Ekstrak air panas menunjukkan aktiviti antioksidan yang lebih tinggi dan tidak toksik kepada HDF. Apabila dilakukan asai β-galaktosidase berkait penuaan (SA-β-Gal), ekstrak air panas mengurangkan ekspresi SA-β-Gal dalam HDF pra-senesens (pasaj 20, 30 < populasi berganda < 40) dan senesens (pasaj 30, populasi berganda > 50). Kesimpulannya, ekstrak air panas S. cerevisiae mempunyai aktiviti antioksidan dengan menghimpun DPPH dan aktiviti anti-senesens dengan mengurangkan ekspresi SA-β-Gal dalam HDF pra-senesens dan senesens.

 

Kata kunci: DPPH; penuaan; Saccharomyces cerevisiae; senses

 

RUJUKAN

Arasi, M.A.S.A.G., Rao, M.G. & Bagyalakshmi, J. 2016. The comparison and analysis of two extraction methods for polysaccharides in Psidium guajava L. fruits. Indian Journal of Pharmaceutical Education and Research 50(3s): S218-S224.

Blagosklonny, M.V. 2014. Geroconversion: Irreversible step to cellular senescence. Cell Cycle 13(23): 3628-3635.

Boucherie, H. 1985. Protein synthesis during transition and stationary phases under glucose limitation in Saccharomyces cerevisiae. Journal of Bacteriology 161(1): 385-392.

Cao, D., Zhao, M., Wan, C., Zhang, Q., Tang, T., Liu, J., Shao, Q., Yang, B., He, J. & Jiang, C. 2019. Role of tea polyphenols in delaying hyperglycemia-induced senescence in human glomerular mesangial cells via miR-126/Akt–p53–p21 pathways. International Urology and Nephrology 51(6): 1071-1078.

Choi, S.I., Lee, J.S., Lee, S., Cho, B.Y., Choi, S.H., Han, X., Sim, W., Kim, Y., Lee, B., Kang, I. & Lee, O. 2019. Protective effects and mechanisms of Pourthiaea villosa(Thunb.) Decne. extract on hydrogen peroxide-induced skin ageing in human dermal fibroblasts. Journal of Medicinal Food 22(8): 841-850.

Chowdhury, S.R., Jing, L.S., Zolkafli, M.N.H., Zarin, N.A.B.M.A., Abdullah, W.A.B.W., Md Mohtar, N.A., Maarof, M. & Abdullah, N.A.H. 2019. Exploring the potential of dermal fibroblast conditioned medium on skin wound healing and anti-ageing. Sains Malaysiana48(3): 637-644.

Cui, Z., Jiamei, Y., Yushu, Y., Xia, F., Haiyan, Y., Zhang, D., Qiong, C. & Guangwei, Z. 2021. Effect of the traditional chinese medicine Pinggan-Qianyang decoction on SIRT1-PTEN  signaling in vascular aging in spontaneously hypertensive rats. Hypertension Research  44: 1087-1098.

Dash, P. & Ghosh, G. 2017. Amino acid composition, antioxidant and functional properties of protein hydrolysates from Cucurbitaceae seeds. Journal of Food Science and Technology 54(13): 4162-4172.

Despres, J., Ramdani, Y., di Giovanni, M., Bénard, M., Zahid, A., Montero-Hadjadje, M., Yvergnaux, F., Saguet, T., Driouich, A. & Follet-Gueye, M.L. 2019. Replicative senescence of human dermal fibroblasts affects structural and functional aspects of the Golgi apparatus. Experimental Dermatology 28(8): 922-932.

Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scorrt, G., Roskelley, C., Medrano, E.E., Linskensi, M., Rubeljii, I., Pereira-Smithii, O., Peacocket, M. & Campisiet, J. 1995. A biomarker that identifies senescent human cells in culture and in ageing skin in vivo. Proceedings of the National Academy of Sciences 92(20): 9363-9367.

Gallo, D., Dillemans, M., Allardin, D., Priem, F. & van Nedervelde, L. 2014. Trophic effect of a methanol yeast extract on 3T3 fibroblast cells. Journal of Cosmetic Science 65(6): 389-401.

Gaspar, L.R., Camargo, F.B., Gianeti, M.D. & Maia Campos, P.M.B.G. 2008. Evaluation of dermatological effects of cosmetic formulations containing Saccharomyces cerevisiae extract and vitamins. Food and Chemical Toxicology 46(11): 3493-3500.

Gazi, M.R., Kanda, K. & Kato, F. 2004. Optimisation of various cultural conditions on growth and antioxidant activity generation by Saccharomyces cerevisiae IFO 2373. Journal of Biological Sciences 4(2): 224-228.

Gerland, L.M., Peyrol, S., Lallemand, C., Branche, R., Magaud, J.P. & Ffrench, M. 2003. Association of increased autophagic inclusions labelled for β-galactosidase with fibroblastic ageing. Experimental Gerontology 38(8): 887-895.

Gu, C. & Pan, S. 2014. The comparison and analysis of three extraction methods for polysaccharides in Purslane. Journal of Food and Nutrition Research 2(7): 401-405.

Hariton, F., Xue, M., Rabbani, N., Fowler, M. & Thornalley, P.J. 2018. Sulforaphane delays fibroblast senescence by curbing cellular glucose uptake, increased glycolysis, and oxidative damage. Oxidative Medicine and Cellular Longevity 2018: 5642148.

Harman, D. 1956. Ageing: A theory based on free radical and radiation chemistry. Journal of Gerontology 11(3): 298-300.

Huh, W.K., Lee, B.H., Kim, S.T., Kim, Y.R., Rhie, G.E., Baek, Y.W., Hwang, C.S., Lee, J.S. & Kang, S.O. 1998. D-erythroascorbic acid is an important antioxidant molecule in Saccharomyces cerevisiae. Molecular Microbiology 30(4): 895-903.

Jaafar, F., Abdullah, A. & Makpol, S. 2018. Cellular uptake and bioavailability of tocotrienol-rich fraction in SIRT1-inhibited human diploid fibroblasts. Scientific Reports 8(1): 10471.

Ju, C-C.,  Huang, J.L., Tsai, H.J., Wang, S.L., Kuo, M.L. & Yao, T.C. 2021. Particulate matter causes telomere shortening and increase in cellular senescence markers in human lung epithelial cells. Ecotoxicology and Environmental Safety 222: 112484.

Khor, S.C., Ngah, W.Z.W., Yusof, Y.A.M., Karim, N.A. & Makpol, S. 2017. Tocotrienol-rich fraction ameliorates antioxidant defense mechanisms and improves replicative senescence-associated oxidative stress in human myoblasts. Oxidative Medicine and Cellular Longevity 2017: 3868305.

Kim, I.S., Yang, M.R., Lee, O.H. & Kang, S.N. 2011. Antioxidant activities of hot water extracts from various spices. International Journal of Molecular Sciences 12(6):  4120-4131.

Kim, K.S. & Yun, H.S. 2006. Production of soluble β-glucan from the cell wall of Saccharomyces cerevisiae. Enzyme and Microbial Technology 39(3): 496-500.

Kogan, G., Staško, A., Bauerová, K., Polovka, M., Šoltés, L., Brezová, V., Navarová, J. & Mihalová, D. 2005. Antioxidant properties of yeast (1→3)-β-D-glucan studied by electron paramagnetic resonance spectroscopy and its activity in the adjuvant arthritis. Carbohydrate Polymers 61(1): 18-28.

Lee, Y.T., Puligundla, P. & Schwarz, P.B. 2017. Molecular weight, solubility, and viscosity of β-glucan preparations from barley pearling byproducts. Sains Malaysiana46(5): 713-718.

Li, Y., Zhang, Y., Liua, M., Qin, Y. & Liu, Y. 2019. Saccharomyces cerevisiae isolates with extreme hydrogen sulfide production showed different oxidative stress resistances responses during wine fermentation by RNA sequencing analysis. Food Microbiology 79: 147-155.

Lipetz, J. & Cristofalo, V. J. 1972. Ultrastructural changes accompanying the ageing of human diploid cells in culture. Journal of Ultrasructure Research 39(1-2): 43-56.

Liu, X.Y., Wang, Q., Cui, S.W. & Liu, H.Z. 2008. A new isolation method of β-D-glucans from spent Saccharomyces cerevisiae. Food Hydrocolloids 22(2): 239-247.

Maarof, M., Lokanathan, Y., Ruszymah, H.I., Saim, A. & Chowdhury, S.R. 2018. Proteomic analysis of human dermal fibroblast conditioned medium (DFCM). The Protein Journal 37(6): 589-607.

Machová, E. & Bystrický, S. 2013. Antioxidant capacities of mannans and glucans are related to their susceptibility of free radical degradation. International Journal of Biological Macromolecules 61: 308-311.

Maharajan, N., Ganesan, C.D., Moon, C., Jang, C.H., Oh, W.K. & Cho, G.W. 2021. Licochalcone D ameliorates oxidative stress‐induced senescence via AMPK activation. International Journal of Molecular Sciences 22(14): 7324.

Makpol, S., Zainuddin, A., Chua, K., Yusof, Y. & Ngah, W. 2012. Gamma-tocotrienol modulation of senescence-associated gene expression prevents cellular ageing in human diploid fibroblasts. Clinics 67(2): 135-143.

Makpol, S., Yeoh, T.W., Ruslam, F.A.C., Arifin, K.T. & Yusof, Y.A.M. 2013. Comparative effect of Piper betle, Chlorella vulgaris and tocotrienol-rich fraction on antioxidant enzymes activity in cellular ageing of human diploid fibroblasts. BMC Complementary and Alternative Medicine 13(1): 210.

Marceau, N., Goyette, R., Deschênes, J. & Valet, J.P. 1980. Morphological differences between epithelial and fibroblast cells in rat liver cultures, and the roles of cell surface fibronectin and cytoskeletal element organization in cell shape. Annals of the New York Academy of Sciences 349(1): 138-152.

Michopoulou, A. & Rousselle, P. 2015. How do epidermal matrix metalloproteinases support re-epithelialization during skin healing? European Journal of Dermatology 25(1): 33-42.

Moon, K.C., Yang, J.P., Lee, J.S., Jeong, S.H., Dhong, E.S. & Han, S.K. 2019. Effects of ultraviolet irradiation on cellular senescence in keratinocytes versus fibroblasts. The Journal of Craniofacial Surgery 30(1): 270-275.

Mülleder, M., Calvani, E., Alam, M.T., Wang, R.K., Eckerstorfer, F., Zelezniak, A. & Ralser, M. 2016. Functional metabolomics describes the yeast biosynthetic regulome. Cell 167(2): 553-565.

Péterszegi, G., Isnard, N., Robert, A.M. & Robert, L. 2003. Studies on skin ageing. Preparation and properties of fucose-rich oligo- and polysaccharides. Effect on fibroblast proliferation and survival. Biomedicine and Pharmacotherapy 57(5-6): 87-94.

Rubin, E. & Reisner, H.M. 2014. Essentials of Rubin’s Pathology. 6th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins.

Severino, J., Allen, R.G., Balin, S., Balin, A. & Cristofalo, V.J. 2000. Is β-galactosidase staining a marker of senescence in vitro and in vivo? Experimental Cell Research 257(1): 162-171.

She, X., Calderone, R., Kruppa, M., Lowman, D., Williams, D., Zhang, L., Gao, Y., Khamooshi, K., Liu, W. & Li, D. 2016. Cell wall N-linked mannoprotein biosynthesis requires Goa1p, a putative regulator of mitochondrial complex I in Candida albicans. PLoS ONE 11(1): e0147175.

Son, H.J., Bae, H.C., Kim, H.J., Lee, D.H., Han, D.W. & Park, J.C. 2005. Effects of β-glucan on proliferation and migration of fibroblasts. Current Applied Physics 5(5): 468-471.

Sorrell, J.M., Baber, M.A. & Caplan, A.I. 2007. Clonal characterization of fibroblasts in the superficial layer of the adult human dermis. Cell and Tissue Research327(3): 499-510.

Starr, J.M. & Starr, R.J. 2014. Skin aging and oxidative stress. In Aging: Oxidative Stress and Dietary Antioxidants, edited by Preedy, V.R. London: Academic Press. pp. 15-22.

Tajul Arifin, K., Goh, T.S., Roslan, M.W.Q., Mussin, B.B., Amir, S.A., Abdul Jalil, N., Lee, P.J. & Winston, R.S. 2019. Tocotrienol-rich fraction (TRF) improves the viability of wild-type Saccharomyces cerevisiae in the initial stationary phase. Medicine and Health 14(1): 106-117.

Tan, J., Jaafar, F. & Makpol, S. 2018. Proteomic profiling of senescent human diploid fibroblasts treated with gamma-tocotrienol. BMC Complementary and Alternative Medicine 18(1): 314.

Tracy, L.E., Minasian, R.A. & Caterson, E.J. 2016. Extracellular matrix and dermal fibroblast function in the healing wound. Advances in Wound Care 5(3): 119-136.

Tsoukalas, D., Fragkiadaki, P., Docea, A.O., Alegakis, A.K., Sarandi, E., Thanasoula, M., Spandidos, D.A., Tsatsakis, A., Razgonova, M.P.  & Calina, D. 2019. Discovery of potent telomerase activators: Unfolding new therapeutic and anti-aging  perspectives. Molecular Medicine Reports 20(4): 3701-3708.

Wang, H., Zhang, S., Zhai, L., Sun, L., Zhao, D., Wang, Z. & Li, X. 2021. Ginsenoside extract from ginseng extends lifespan and health span in Caenorhabditis elegans. Food and Function 12(15): 6793-6808.

Wei, D., Zhang, L., Williams, D.L. & Browder, I.W. 2002. Glucan stimulates human dermal fibroblast collagen biosynthesis through a nuclear factor-1 dependent mechanism. Wound Repair and Regeneration 10(3): 161-168.

Wu, D.T., Zhao, Y., Guo, H., Gan, R., Peng, L., Zhao, G. & Zou, L. 2021. Physicochemical and biological properties of polysaccharides from Dictyophora indusiata prepared by different extraction techniques. Polymers 13(14): 2357.

Xian, D., Guo, M., Xu, J., Yang, Y., Zhao, Y. & Zhong, J. 2021. Current evidence to support the therapeutic potential of flavonoids in oxidative stress-related dermatoses. Redox Report: Communications In Free Radical Research 26(1): 134-146.

Xu, J., Hou, H., Hu, J. & Liu, B. 2018. Optimized microwave extraction, characterization and antioxidant capacity of biological polysaccharides from Eucommia ulmoides Oliver leaf. Scientific Reports 8(1): 6561.

Yusof, Y.A.M., Saad, S.M., Makpol, S., Shamaan, N.A. & Ngah, W.Z.W. 2010. Hot water extract of Chlorella vulgaris induced DNA damage and apoptosis. Clinics 65(12): 1371-1377.

Zarei, O., Dastmalchi, S. & Hamzeh-Mivehroud, M. 2016. A simple and rapid protocol for producing yeast extract from Saccharomyces cerevisiae suitable for preparing bacterial culture media. Iranian Journal of Pharmaceutical Research 15(4): 907-913.

Zhang, Z., Lv, G., He, W., Shi, L., Pan, H. & Fan, L. 2013. Effects of extraction methods on the antioxidant activities of polysaccharides obtained from Flammulina velutipes. Carbohydrate Polymers 98(2): 1524-1531.

Zhong, H., Hong, C., Han, Z., Hwang, S.J., Kim, B., Xu, Z., Lee, J., Hoon Kim, K., Jin, M.H. & Zou, C. 2019. Erjingwan extracts exert antiaging effects of skin through activating Nrf2 and inhibiting NF-κB. Evidence-based Complementary and Alternative Medicine 2019: 5976749.

 

*Pengarang untuk surat-menyurat; email: khaizurin.tajul.arifin@ppukm.ukm.edu.my

 

   

 

   

sebelumnya