Sains Malaysiana
51(8)(2022):
2619-2632
http://doi.org/10.17576/jsm-2022-5108-21
Sifat
Nilai Tambah Membran Selulosa Terjana Semula: Suatu Ulasan
(Regenerated Cellulose Membrane and Its
Added Value: A Review)
NUR
JANNAH MD HASSAN1, KUSHAIRI MOHD SALLEH2,3,*, SARANI
ZAKARIA1 & NURSYAMIMI AHMAD GHAZALI1
1Jabatan Fizik Gunaan, Fakulti Sains
dan Teknologi Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul
Ehsan, Malaysia
2Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
3Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
Diserahkan: 24 Ogos 2021/Diterima: 15
Februari 2022
Abstrak
Atas ketersediaan
bahan mesra alam yang kian pesat untuk pelbagai institusi ekonomi, kini bahan
biopolimer bukanlah alternatif asing bagi menggantikan polimer sintetik.
Pengolahan sifat kimia selulosa merupakan salah satu langkah ke arah kemapanan
yang dapat memenuhi kehendak pasaran yang dahagakan sumber alam yang lestari.
Selulosa terbukti memupuk kos penghasilan yang rendah, tidak toksik, mudah
diolah dan kepelbagaian produk yang terjana daripadanya. Antara produknya ialah
membran selulosa terjana semula (MSTS), bebenang, hidrogel dan aerogel. Walau
bagaimanapun, keterbatasan produk yang dijana semula daripada selulosa
terutamanya MSTS memerlukan pengubahsuaian fizikal mahupun kimia, serta bahan
tambah yang lain untuk meningkatkan kefungsiannya. Antara bahan tambah MSTS
seperti kitosan, nanozarah perak dan grafin oksida memberi sifat yang berbeza
mengikut kehendak industri. Oleh itu, fokus utama ulasan kajian ini adalah bagi
melihat kebaikan nilai tambah MSTS yang diolah daripada segi sifat fizikal,
mekanikal, kimia, antibakteria dan biodegradasinya. Seterusnya, melihat
aplikasi MSTS yang telah diubah suai terhadap industri khususnya perubatan,
pertanian dan perawatan air.
Kata kunci:
Antibakteria; penghasilan; produk berasaskan biosumber; produk hijau
Abstract
Due to the increasing availability
of environmentally friendly materials for various economic institutions, now
biopolymer materials are not a foreign alternative to replace synthetic
polymers. The processing of the chemical properties of cellulose is one of the
steps towards sustainability that can meet the needs of a market for
sustainable natural resources. Cellulose was proven to cultivate low production
costs, non -toxic, easy to process, and a variety of products generated from
it. Among its products are regenerated cellulose membranes (RCM), threads,
hydrogels, and aerogels. However, the limitations of products regenerated from
cellulose especially RCM required pysical dan chemical modification and other
additives to enhance its functionality. Among RCM additives such as chitosan,
silver nanoparticles and graphene oxide impart different properties according
to industry requirements. Therefore, the main focus of this study was to study
the value-added benefits of processed MSTS as well as its effectiveness in
terms of physical, mechanical, chemical, antibacterial and biodegradable
properties. Furthermore, the application of RCM has been modified to industries
particularly medicine, agriculture and waste water treatments are further
evaluated.
Keywords:
Antibacterial; bioresource based products; green products; production
RUJUKAN
Abdel-Hamid, A.M., Solbiati, J.O. & Cann, I.K.O. 2013. Insights into
lignin degradation and its potential industrial applications. Dlm. Advances
in Applied Microbiology-Edisi ke-1. Cambridge: Academic Press Inc.
jil. 82. hlm. 1-28.
Arya, M., Lee, N. & Pellegrino, S. 2017. Crease-free
biaxial packaging of thick membranes with slipping folds. International
Journal of Solids and Structures 108: 24-39.
Atalla, R.H. & VanderHart, D.L. 1984. Native cellulose: A
composite of two distinct crystalline forms. Science 223(4633): 283-285.
Azahari, N.A., Zakaria, S., Kaco, H., Yee, G.S., Chia, C.H.,
Jaafar, S.N.S. & Sajab, M.S. 2017. Membran selulosa kenaf terjana semula
daripada larutan akues NaOH/Urea yang digumpal menggunakan asid sulfurik. Sains
Malaysiana 46(5): 795-801.
Baharin, K.W., Zakaria, S., Ellis, A.V., Talip, N., Kaco, H.,
Gan, S., Zailan, F.D. & Ain Syed Hashim, S.N. 2018. Factors affecting
cellulose dissolution of oil palm empty fruit bunch and kenaf pulp in NaOH/urea
solvent. Sains Malaysiana 47(2): 377-386.
Bajpai, P. 2016. Pretreatment of lignocellulosic biomass for
biofuel production. Dlm. Green Chemistry for Sustainability-Edisi
ke-1, disunting oleh Sharma, S.K. Jaipur, India: Springer Nature. hlm. 93.
Benavente, J., García, M.E., Urbano, N., Moscoso, A. & Hierrezuelo,
J. 2017. Inclusion of silver nanoparticles for improving regenerated cellulose
membrane performance and reduction of biofouling. International Journal of
Biological Macromolecules 103: 758-763.
Biganska, O. & Navard, P. 2009. Morphology of cellulose
objects regenerated from cellulose-N-methylmorpholine N-oxide-water solutions. Cellulose 16(2): 179-188.
Brigham, C. Biopolymers: biodegradable alternatives to traditional plastics. 2018. Dlm. Green Chemistry: An Inclusive Approach, disunting oleh Török, B. & Dransfield, T. Cambridge: Elsevier Inc. hlm. 753-770.
Cazón, P., Vázquez, M. & Velázquez, G. 2020. Regenerated
cellulose films with chitosan and polyvinyl alcohol: Effect of the moisture
content on the barrier, mechanical and optical properties. Carbohydrate
Polymers 236: 116031.
Chen, H.Z., Wang, N. & Liu, L.Y. 2012. Regenerated
cellulose membrane prepared with ionic liquid 1-butyl-3-methylimidazolium
chloride as solvent using wheat straw. Journal of Chemical Technology and
Biotechnology 87(12): 1634-1640.
Chen, J., Zhang, T., Hua, W., Li, P. & Wang, X. 2020. 3D
Porous poly(lactic acid)/regenerated cellulose composite scaffolds based on
electrospun nanofibers for biomineralization. Colloids and Surfaces A:
Physicochemical and Engineering Aspects 585: 124048.
Cheng, F., Wu, Y., Li, H., Yan, T., Wei, X., Wu, G., He, J.
& Huang, Y. 2019. Biodegradable N, O-carboxymethyl chitosan/oxidized
regenerated cellulose composite gauze as a barrier for preventing postoperative
adhesion. Carbohydrate Polymers 207: 180-190.
Chook, S.W., Chia, C.H., Zakaria, S., Ayob, M.K., Huang,
N.M., Neoh, H.M., He, M., Zhang, L. & Jamal, R. 2014. A graphene oxide
facilitated a highly porous and effective antibacterial regenerated cellulose
membrane containing stabilized silver nanoparticles. Cellulose 21(6):
4261-4270.
Cutrim, F.M., Ramos, E.C.S.S., Abreu, M.C.C., Godinho, A.S.,
Maciel, A.P., Mendonça, C.J.S. & Cavalcante, K.S.B. 2019. A study of
chemical composition and enzymatic hydrolysis of solid organic waste from
agrosilvopastoral systems. Journal of the Brazilian Chemical Society 30(9): 1955-1963.
Fernandes, S.C.M., Sadocco, P., Alonso-Varona, A., Palomares,
T., Eceiza, A., Silvestre, A.J.D., Mondragon, I. & Freire, C.S.R. 2013.
Bioinspired antimicrobial and biocompatible bacterial cellulose membranes
obtained by surface functionalization with aminoalkyl groups. ACS Applied
Materials and Interfaces 5(8): 3290-3297.
Fink, H., Weigel, P., Purz, H.J. & Ganster, J. 2001.
Structure formation of regenerated cellulose materials from NMMO-solutions.
Progress in Polymer Science 26(9): 1473-1524.
Fu, F., Guo, Y., Wang, Y. & Tan, Q. 2014. Structure and properties of the regenerated cellulose membranes prepared from cellulose carbamate in NaOH / ZnO aqueous solution. Cellulose 21: 2819-2830.
Gan, S., Zakaria, S., Chia, C.H., Chen, R.S. &
Jeyalaldeen, N. 2015a. Physico-mechanical properties of a microwave-irradiated
kenaf carbamate/graphene oxide membrane. Cellulose 22(6): 3851-3863.
Gan, S., Zakaria, S., Chia, C.H., Padzil, F.N.M. & Ng, P.
2015b. Effect of hydrothermal pretreatment on solubility and formation of kenaf
cellulose membrane and hydrogel. Carbohydrate Polymers 115: 62-68.
Hangasky, J.A., Detomasi, T.C., Lemon, C.M. & Marletta, M.A. 2020. Glycosidic bond oxidation: structure, function, and mechanism of polysaccharide monooxygenases. Dlm. Comprehensive Natural Products III: Chemistry and Biology Volume 1, disunting oleh Liu, H.W. & Begley, T.P. Amsterdam, Netherlands: Elsevier Ltd. hlm. 298-331.
Huang, K. & Wang, Y. 2022. Recent applications of
regenerated cellulose films and hydrogels in food packaging. Current Opinion
in Food Science 43: 7-17.
Huang, X., Tian, F., Chen, G., Wang, F., Weng, R. & Xi,
B. 2021. Preparation and characterization of regenerated cellulose membrane
blended with ZrO2 nanoparticles. Membranes 12(1): 42.
Huang, J., Wang, H. & Zhang, K. 2014. Modification of PES membrane with Ag-SiO2: reduction of biofouling and improvement of filtration performance. Desalination
336(1): 8-17.
Ichwan, M. & Son, T.W. 2012. Preparation and
characterization of dense cellulose film for membrane application. Journal
of Applied Polymer Science 124(2): 1409-1418.
In Kim, J. & Kim, C.S. 2018. Harnessing nanotopography of
PCL/collagen nanocomposite membrane and changes in cell morphology coordinated
with wound healing activity. Materials Science and Engineering C 91(2017): 824-837.
Jayasekara, S. & Ratnayake, R. 2019. Microbial
cellulases: An overview and applications. Dlm. Cellulose, disunting oleh
Pascual, A.R. & Martin, M.E.E. IntechOpen. hlm. 1-21.
Jhaveri, J.H. & Murthy, Z.V.P. 2016. A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination 379: 137-154.
Kaco, H., Baharin, K.W., Zakaria, S., Chia, C.H., Jaafar, S.N.S.,
Gan, S.Y. & Sajab, M.S. 2017. Preparation and characterization of Fe3O4/regenerated
cellulose membrane. Sains Malaysiana 46(4): 623-628.
Karimi, M.B. & Hassanajili, S. 2017. Short
fiber/polyurethane composite membrane for gas separation. Journal of Membrane
Science 543: 40-48.
Kumar, R., Sharma, R.K. & Singh, A.P. 2018. Grafted
cellulose: A bio-based polymer for durable applications. Polymer Bulletin 75(5):
2213-2242.
Li, R., Zhang, L. & Xu, M. 2012. Novel regenerated
cellulose films prepared by coagulating with water: Structure and properties. Carbohydrate
Polymers 87(1): 95-100.
Li, X., Li, H.C., You, T.T., Wu, Y.Y., Ramaswamy, S. &
Xu, F. 2019. Fabrication of regenerated cellulose membranes with high tensile
strength and antibacterial property via surface amination. Industrial Crops
and Products 140: 111603.
Livazovic, S., Li, Z., Behzad, A.R., Peinemann, K.V. &
Nunes, S.P. 2015. Cellulose multilayer membranes manufacture with ionic liquid. Journal of Membrane Science 490: 282-293.
Mazlan, N.S.N., Zakaria, S., Gan, S., Hua, C.C. &
Baharin, K.W. 2019. Comparison of regenerated cellulose membrane coagulated in
sulphate based coagulant. Cerne 25(1): 18-24.
Mohamed, M.A., Salleh, W.N.W., Jaafar, J., Ismail, A.F.,
Mutalib, M.A. & Jamil, S.M. 2015. Feasibility of recycled newspaper as
cellulose source for regenerated cellulose membrane fabrication. Journal of
Applied Polymer Science 132(43): 42684.
Mohamed, M.A., Salleh, W.N.W., Jaafar, J., Mohd Hir, Z.A.,
Rosmi, M.S., Abd. Mutalib, M., Ismail, A.F. & Tanemura, M. 2016.
Regenerated cellulose membrane as bio-template for in-situ growth of
visible-light driven C-modified mesoporous titania. Carbohydrate Polymers 146: 166-173.
Moradian, M., Islam, M.S. & Van De Ven, T.G.M. 2021.
Insoluble regenerated cellulose films made from mildly carboxylated dissolving
and kraft pulps. Industrial & Engineering Chemistry Research 60(15):
5385-5393.
Ning, R., Liang, J., Sun, Z., Liu, X. & Sun, W. 2021.
Preparation and characterization of black biodegradable mulch films from
multiple biomass materials. Polymer Degradation and Stability 183:
109411.
Padzil, F.N.M., Zakaria, S., Chia, C.H., Jaafar, S.N.S.,
Kaco, H., Gan, S. & Ng, P. 2015. Effect of acid hydrolysis on regenerated
kenaf core membrane produced using aqueous alkaline-urea systems. Carbohydrate
Polymers 124: 164-171.
Pangon, A., Saesoo, S., Saengkrit, N., Ruktanonchai, U. &
Intasanta, V. 2016. Hydroxyapatite-hybridized chitosan/chitin whisker
bionanocomposite fibers for bone tissue engineering applications. Carbohydrate
Polymers 144: 419-427.
Pérez, S. & Samain, D. 2010. Structure and engineering of
celluloses. Dlm. Advances in Carbohydrate Chemistry and Biochemistry,
disunting oleh Horton, D. Elsevier Inc. hlm. 25-116.
Qi, H., Chang, C. & Zhang, L. 2009. Properties and
applications of biodegradable transparent and photoluminescent cellulose films
prepared via a green process. Green Chemistry 11(2): 177-184.
Saedi, S., Shokri, M., Kim, J.T. & Shin, G.H. 2021.
Semi-transparent regenerated cellulose/ZnONP nanocomposite film as a potential
antimicrobial food packaging material. Journal of Food Engineering 307:
110665.
Salleh, K.M., Zakaria, S., Sajab, M.S., Gan, S. & Kaco,
H. 2019. Superabsorbent hydrogel from oil palm empty fruit bunch cellulose and
sodium carboxymethylcellulose. International Journal of Biological
Macromolecules 131: 50-59.
Sen, S., Martin, J.D. & Argyropoulos, D.S. 2013. Review
of cellulose non-derivatizing solvent interactions with emphasis on activity in
inorganic molten salt hydrates. ACS Sustainable Chemistry and Engineering 1(8): 858-870.
El Seoud, O.A. & Heinze, T. 2005. Organic esters of
cellulose: New perspectives for old polymers. Advances in Polymer Science 186: 103-149.
Sharif, F., Muhammad, N. & Zafar, T. 2020. Cellulose
based biomaterials: Benefits and challenges. Dlm. Biofibers and Biopolymers
for Biocomposites: Synthesis, Characterization and Properties. Springer,
Cham. hlm. 229-246.
Sirviö, J.A. & Lakovaara, M. 2021. A fast dissolution
pretreatment to produce strong regenerated cellulose nanofibers via mechanical
disintegration. Biomacromolecules 22(8): 3366-3376.
Stamatialis, D.F., Papenburg, B.J., Gironés, M., Saiful, S.,
Bettahalli, S.N.M., Schmitmeier, S. & Wessling, M. 2008. Medical
applications of membranes: Drug delivery, artificial organs and tissue
engineering. Journal of Membrane Science 308(1-2): 1-34.
Weng, R., Chen, L., Lin, S., Zhang, H., Wu, H., Liu, K., Cao,
S. & Huang, L. 2017. Preparation and characterization of antibacterial
cellulose/chitosan nanofiltration membranes. Polymers 9(4): 116.
Xiong, X., Duan, J., Zou, W., He, X. & Zheng, W. 2010. A
pH-sensitive regenerated cellulose membrane. Journal of Membrane Science 363(1-2): 96-102.
Yan, E.Y.C., Zakaria, S., Chia, C.H. & Boku, T.R. 2017.
Bifunctional regenerated cellulose membrane containing TiO2 nanoparticles for absorption and photocatalytic decomposition. Sains
Malaysiana 46(4): 637-644.
Yan, M., Wu, Y., Lin, R., Ma, F. & Jiang, Z. 2021.
Multilevel/hierarchical nanocomposite-imprinted regenerated cellulose membranes
for high-efficiency separation: A selective recognition method with
Au/PDA-loaded surface. Environmental Science: Nano 8(7): 1978-1991.
Yang, J., Dahlström, C., Edlund, H., Lindman, B. &
Norgren, M. 2019. pH-responsive cellulose-chitosan nanocomposite films with
slow release of chitosan. Cellulose 26(6): 3763-3776.
Zainul Armir, N.A., Mohd Salleh, K., Zulkifli, A. &
Zakaria, S. 2022. pH-responsive ampholytic regenerated cellulose hydrogel
integrated with carrageenan and chitosan. Industrial Crops and Products 178: 114588.
Zhang, S., Kai, C., Liu, B., Zhang, S., Wei, W., Xu, X. & Zhou, Z. 2020. Facile fabrication of cellulose membrane containing polyiodides and its antibacterial properties. Applied Surface Science 500: 144046.
Zhang, S., Yu, C., Liu, N., Teng, Y. & Yin, C. 2019.
Preparation of transparent anti-pollution cellulose carbamate regenerated
cellulose membrane with high separation ability. International Journal of
Biological Macromolecules 139: 332-341.
Zhao, G., Lyu, X., Lee, J., Cui, X. & Chen, W.N. 2019.
Biodegradable and transparent cellulose film prepared eco-friendly from durian
rind for packaging application. Food Packaging and Shelf Life 21:
100345.
*Pengarang surat-menyurat; email:
kmsalleh@usm.my
|