Sains Malaysiana 51(8)(2022): 2619-2632

http://doi.org/10.17576/jsm-2022-5108-21

 

Sifat Nilai Tambah Membran Selulosa Terjana Semula: Suatu Ulasan

(Regenerated Cellulose Membrane and Its Added Value: A Review)

 

NUR JANNAH MD HASSAN1, KUSHAIRI MOHD SALLEH2,3,*, SARANI ZAKARIA1 & NURSYAMIMI AHMAD GHAZALI1

 

1Jabatan Fizik Gunaan, Fakulti Sains dan Teknologi Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia

3Renewable Biomass Transformation Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia

 

Diserahkan: 24 Ogos 2021/Diterima: 15 Februari 2022

 

Abstrak

Atas ketersediaan bahan mesra alam yang kian pesat untuk pelbagai institusi ekonomi, kini bahan biopolimer bukanlah alternatif asing bagi menggantikan polimer sintetik. Pengolahan sifat kimia selulosa merupakan salah satu langkah ke arah kemapanan yang dapat memenuhi kehendak pasaran yang dahagakan sumber alam yang lestari. Selulosa terbukti memupuk kos penghasilan yang rendah, tidak toksik, mudah diolah dan kepelbagaian produk yang terjana daripadanya. Antara produknya ialah membran selulosa terjana semula (MSTS), bebenang, hidrogel dan aerogel. Walau bagaimanapun, keterbatasan produk yang dijana semula daripada selulosa terutamanya MSTS memerlukan pengubahsuaian fizikal mahupun kimia, serta bahan tambah yang lain untuk meningkatkan kefungsiannya. Antara bahan tambah MSTS seperti kitosan, nanozarah perak dan grafin oksida memberi sifat yang berbeza mengikut kehendak industri. Oleh itu, fokus utama ulasan kajian ini adalah bagi melihat kebaikan nilai tambah MSTS yang diolah daripada segi sifat fizikal, mekanikal, kimia, antibakteria dan biodegradasinya. Seterusnya, melihat aplikasi MSTS yang telah diubah suai terhadap industri khususnya perubatan, pertanian dan perawatan air.

 

Kata kunci: Antibakteria; penghasilan; produk berasaskan biosumber; produk hijau

 

Abstract

Due to the increasing availability of environmentally friendly materials for various economic institutions, now biopolymer materials are not a foreign alternative to replace synthetic polymers. The processing of the chemical properties of cellulose is one of the steps towards sustainability that can meet the needs of a market for sustainable natural resources. Cellulose was proven to cultivate low production costs, non -toxic, easy to process, and a variety of products generated from it. Among its products are regenerated cellulose membranes (RCM), threads, hydrogels, and aerogels. However, the limitations of products regenerated from cellulose especially RCM required pysical dan chemical modification and other additives to enhance its functionality. Among RCM additives such as chitosan, silver nanoparticles and graphene oxide impart different properties according to industry requirements. Therefore, the main focus of this study was to study the value-added benefits of processed MSTS as well as its effectiveness in terms of physical, mechanical, chemical, antibacterial and biodegradable properties. Furthermore, the application of RCM has been modified to industries particularly medicine, agriculture and waste water treatments are further evaluated.

 

Keywords: Antibacterial; bioresource based products; green products; production

 

RUJUKAN

Abdel-Hamid, A.M., Solbiati, J.O. & Cann, I.K.O. 2013. Insights into lignin degradation and its potential industrial applications. Dlm. Advances in Applied Microbiology-Edisi ke-1. Cambridge: Academic Press Inc. jil. 82. hlm. 1-28.

Arya, M., Lee, N. & Pellegrino, S. 2017. Crease-free biaxial packaging of thick membranes with slipping folds. International Journal of Solids and Structures 108: 24-39.

Atalla, R.H. & VanderHart, D.L. 1984. Native cellulose: A composite of two distinct crystalline forms. Science 223(4633): 283-285.

Azahari, N.A., Zakaria, S., Kaco, H., Yee, G.S., Chia, C.H., Jaafar, S.N.S. & Sajab, M.S. 2017. Membran selulosa kenaf terjana semula daripada larutan akues NaOH/Urea yang digumpal menggunakan asid sulfurik. Sains Malaysiana 46(5): 795-801.

Baharin, K.W., Zakaria, S., Ellis, A.V., Talip, N., Kaco, H., Gan, S., Zailan, F.D. & Ain Syed Hashim, S.N. 2018. Factors affecting cellulose dissolution of oil palm empty fruit bunch and kenaf pulp in NaOH/urea solvent. Sains Malaysiana 47(2): 377-386.

Bajpai, P. 2016. Pretreatment of lignocellulosic biomass for biofuel production. Dlm. Green Chemistry for Sustainability-Edisi ke-1, disunting oleh Sharma, S.K. Jaipur, India: Springer Nature. hlm. 93.

Benavente, J., García, M.E., Urbano, N., Moscoso, A. & Hierrezuelo, J. 2017. Inclusion of silver nanoparticles for improving regenerated cellulose membrane performance and reduction of biofouling. International Journal of Biological Macromolecules 103: 758-763.

Biganska, O. & Navard, P. 2009. Morphology of cellulose objects regenerated from cellulose-N-methylmorpholine N-oxide-water solutions. Cellulose 16(2): 179-188.

Brigham, C. Biopolymers: biodegradable alternatives to traditional plastics. 2018. Dlm. Green Chemistry: An Inclusive Approach, disunting oleh Török, B. & Dransfield, T. Cambridge: Elsevier Inc. hlm. 753-770.

Cazón, P., Vázquez, M. & Velázquez, G. 2020. Regenerated cellulose films with chitosan and polyvinyl alcohol: Effect of the moisture content on the barrier, mechanical and optical properties. Carbohydrate Polymers 236: 116031.

Chen, H.Z., Wang, N. & Liu, L.Y. 2012. Regenerated cellulose membrane prepared with ionic liquid 1-butyl-3-methylimidazolium chloride as solvent using wheat straw. Journal of Chemical Technology and Biotechnology 87(12): 1634-1640.

Chen, J., Zhang, T., Hua, W., Li, P. & Wang, X. 2020. 3D Porous poly(lactic acid)/regenerated cellulose composite scaffolds based on electrospun nanofibers for biomineralization. Colloids and Surfaces A: Physicochemical and Engineering Aspects 585: 124048.

Cheng, F., Wu, Y., Li, H., Yan, T., Wei, X., Wu, G., He, J. & Huang, Y. 2019. Biodegradable N, O-carboxymethyl chitosan/oxidized regenerated cellulose composite gauze as a barrier for preventing postoperative adhesion. Carbohydrate Polymers 207: 180-190.

Chook, S.W., Chia, C.H., Zakaria, S., Ayob, M.K., Huang, N.M., Neoh, H.M., He, M., Zhang, L. & Jamal, R. 2014. A graphene oxide facilitated a highly porous and effective antibacterial regenerated cellulose membrane containing stabilized silver nanoparticles. Cellulose 21(6): 4261-4270.

Cutrim, F.M., Ramos, E.C.S.S., Abreu, M.C.C., Godinho, A.S., Maciel, A.P., Mendonça, C.J.S. & Cavalcante, K.S.B. 2019. A study of chemical composition and enzymatic hydrolysis of solid organic waste from agrosilvopastoral systems. Journal of the Brazilian Chemical Society 30(9): 1955-1963.

Fernandes, S.C.M., Sadocco, P., Alonso-Varona, A., Palomares, T., Eceiza, A., Silvestre, A.J.D., Mondragon, I. & Freire, C.S.R. 2013. Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Applied Materials and Interfaces 5(8): 3290-3297.

Fink, H., Weigel, P., Purz, H.J. & Ganster, J. 2001. Structure formation of regenerated cellulose materials from NMMO-solutions. Progress in Polymer Science 26(9): 1473-1524.

Fu, F., Guo, Y., Wang, Y. & Tan, Q. 2014. Structure and properties of the regenerated cellulose membranes prepared from cellulose carbamate in NaOH / ZnO aqueous solution. Cellulose 21: 2819-2830.

Gan, S., Zakaria, S., Chia, C.H., Chen, R.S. & Jeyalaldeen, N. 2015a. Physico-mechanical properties of a microwave-irradiated kenaf carbamate/graphene oxide membrane. Cellulose 22(6): 3851-3863.

Gan, S., Zakaria, S., Chia, C.H., Padzil, F.N.M. & Ng, P. 2015b. Effect of hydrothermal pretreatment on solubility and formation of kenaf cellulose membrane and hydrogel. Carbohydrate Polymers 115: 62-68.

Hangasky, J.A., Detomasi, T.C., Lemon, C.M. & Marletta, M.A. 2020. Glycosidic bond oxidation: structure, function, and mechanism of polysaccharide monooxygenases. Dlm. Comprehensive Natural Products III: Chemistry and Biology Volume 1, disunting oleh Liu, H.W. & Begley, T.P. Amsterdam, Netherlands: Elsevier Ltd. hlm. 298-331.

Huang, K. & Wang, Y. 2022. Recent applications of regenerated cellulose films and hydrogels in food packaging. Current Opinion in Food Science 43: 7-17.

Huang, X., Tian, F., Chen, G., Wang, F., Weng, R. & Xi, B. 2021. Preparation and characterization of regenerated cellulose membrane blended with ZrO2 nanoparticles. Membranes 12(1): 42.

Huang, J., Wang, H. & Zhang, K. 2014. Modification of PES membrane with Ag-SiO2: reduction of biofouling and improvement of filtration performance. Desalination 336(1): 8-17.

Ichwan, M. & Son, T.W. 2012. Preparation and characterization of dense cellulose film for membrane application. Journal of Applied Polymer Science 124(2): 1409-1418.

In Kim, J. & Kim, C.S. 2018. Harnessing nanotopography of PCL/collagen nanocomposite membrane and changes in cell morphology coordinated with wound healing activity. Materials Science and Engineering C 91(2017): 824-837.

Jayasekara, S. & Ratnayake, R. 2019. Microbial cellulases: An overview and applications. Dlm. Cellulose, disunting oleh Pascual, A.R. & Martin, M.E.E. IntechOpen. hlm. 1-21.

Jhaveri, J.H. & Murthy, Z.V.P. 2016. A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination 379: 137-154.

Kaco, H., Baharin, K.W., Zakaria, S., Chia, C.H., Jaafar, S.N.S., Gan, S.Y. & Sajab, M.S. 2017. Preparation and characterization of Fe3O4/regenerated cellulose membrane. Sains Malaysiana 46(4): 623-628.

Karimi, M.B. & Hassanajili, S. 2017. Short fiber/polyurethane composite membrane for gas separation. Journal of Membrane Science 543: 40-48.

Kumar, R., Sharma, R.K. & Singh, A.P. 2018. Grafted cellulose: A bio-based polymer for durable applications. Polymer Bulletin 75(5): 2213-2242.

Li, R., Zhang, L. & Xu, M. 2012. Novel regenerated cellulose films prepared by coagulating with water: Structure and properties. Carbohydrate Polymers 87(1): 95-100.

Li, X., Li, H.C., You, T.T., Wu, Y.Y., Ramaswamy, S. & Xu, F. 2019. Fabrication of regenerated cellulose membranes with high tensile strength and antibacterial property via surface amination. Industrial Crops and Products 140: 111603.

Livazovic, S., Li, Z., Behzad, A.R., Peinemann, K.V. & Nunes, S.P. 2015. Cellulose multilayer membranes manufacture with ionic liquid. Journal of Membrane Science 490: 282-293.

Mazlan, N.S.N., Zakaria, S., Gan, S., Hua, C.C. & Baharin, K.W. 2019. Comparison of regenerated cellulose membrane coagulated in sulphate based coagulant. Cerne 25(1): 18-24.

Mohamed, M.A., Salleh, W.N.W., Jaafar, J., Ismail, A.F., Mutalib, M.A. & Jamil, S.M. 2015. Feasibility of recycled newspaper as cellulose source for regenerated cellulose membrane fabrication. Journal of Applied Polymer Science 132(43): 42684.

Mohamed, M.A., Salleh, W.N.W., Jaafar, J., Mohd Hir, Z.A., Rosmi, M.S., Abd. Mutalib, M., Ismail, A.F. & Tanemura, M. 2016. Regenerated cellulose membrane as bio-template for in-situ growth of visible-light driven C-modified mesoporous titania. Carbohydrate Polymers 146: 166-173.

Moradian, M., Islam, M.S. & Van De Ven, T.G.M. 2021. Insoluble regenerated cellulose films made from mildly carboxylated dissolving and kraft pulps. Industrial & Engineering Chemistry Research 60(15): 5385-5393.

Ning, R., Liang, J., Sun, Z., Liu, X. & Sun, W. 2021. Preparation and characterization of black biodegradable mulch films from multiple biomass materials. Polymer Degradation and Stability 183: 109411.

Padzil, F.N.M., Zakaria, S., Chia, C.H., Jaafar, S.N.S., Kaco, H., Gan, S. & Ng, P. 2015. Effect of acid hydrolysis on regenerated kenaf core membrane produced using aqueous alkaline-urea systems. Carbohydrate Polymers 124: 164-171.

Pangon, A., Saesoo, S., Saengkrit, N., Ruktanonchai, U. & Intasanta, V. 2016. Hydroxyapatite-hybridized chitosan/chitin whisker bionanocomposite fibers for bone tissue engineering applications. Carbohydrate Polymers 144: 419-427.

Pérez, S. & Samain, D. 2010. Structure and engineering of celluloses. Dlm. Advances in Carbohydrate Chemistry and Biochemistry, disunting oleh Horton, D. Elsevier Inc. hlm. 25-116.

Qi, H., Chang, C. & Zhang, L. 2009. Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process. Green Chemistry 11(2): 177-184.

Saedi, S., Shokri, M., Kim, J.T. & Shin, G.H. 2021. Semi-transparent regenerated cellulose/ZnONP nanocomposite film as a potential antimicrobial food packaging material. Journal of Food Engineering 307: 110665.

Salleh, K.M., Zakaria, S., Sajab, M.S., Gan, S. & Kaco, H. 2019. Superabsorbent hydrogel from oil palm empty fruit bunch cellulose and sodium carboxymethylcellulose. International Journal of Biological Macromolecules 131: 50-59.

Sen, S., Martin, J.D. & Argyropoulos, D.S. 2013. Review of cellulose non-derivatizing solvent interactions with emphasis on activity in inorganic molten salt hydrates. ACS Sustainable Chemistry and Engineering 1(8): 858-870.

El Seoud, O.A. & Heinze, T. 2005. Organic esters of cellulose: New perspectives for old polymers. Advances in Polymer Science 186: 103-149.

Sharif, F., Muhammad, N. & Zafar, T. 2020. Cellulose based biomaterials: Benefits and challenges. Dlm. Biofibers and Biopolymers for Biocomposites: Synthesis, Characterization and Properties. Springer, Cham. hlm. 229-246.

Sirviö, J.A. & Lakovaara, M. 2021. A fast dissolution pretreatment to produce strong regenerated cellulose nanofibers via mechanical disintegration. Biomacromolecules 22(8): 3366-3376.

Stamatialis, D.F., Papenburg, B.J., Gironés, M., Saiful, S., Bettahalli, S.N.M., Schmitmeier, S. & Wessling, M. 2008. Medical applications of membranes: Drug delivery, artificial organs and tissue engineering. Journal of Membrane Science 308(1-2): 1-34.

Weng, R., Chen, L., Lin, S., Zhang, H., Wu, H., Liu, K., Cao, S. & Huang, L. 2017. Preparation and characterization of antibacterial cellulose/chitosan nanofiltration membranes. Polymers 9(4): 116.

Xiong, X., Duan, J., Zou, W., He, X. & Zheng, W. 2010. A pH-sensitive regenerated cellulose membrane. Journal of Membrane Science 363(1-2): 96-102.

Yan, E.Y.C., Zakaria, S., Chia, C.H. & Boku, T.R. 2017. Bifunctional regenerated cellulose membrane containing TiO2 nanoparticles for absorption and photocatalytic decomposition. Sains Malaysiana 46(4): 637-644.

Yan, M., Wu, Y., Lin, R., Ma, F. & Jiang, Z. 2021. Multilevel/hierarchical nanocomposite-imprinted regenerated cellulose membranes for high-efficiency separation: A selective recognition method with Au/PDA-loaded surface. Environmental Science: Nano 8(7): 1978-1991.

Yang, J., Dahlström, C., Edlund, H., Lindman, B. & Norgren, M. 2019. pH-responsive cellulose-chitosan nanocomposite films with slow release of chitosan. Cellulose 26(6): 3763-3776.

Zainul Armir, N.A., Mohd Salleh, K., Zulkifli, A. & Zakaria, S. 2022. pH-responsive ampholytic regenerated cellulose hydrogel integrated with carrageenan and chitosan. Industrial Crops and Products 178: 114588.

Zhang, S., Kai, C., Liu, B., Zhang, S., Wei, W., Xu, X. & Zhou, Z. 2020. Facile fabrication of cellulose membrane containing polyiodides and its antibacterial properties. Applied Surface Science 500: 144046.

Zhang, S., Yu, C., Liu, N., Teng, Y. & Yin, C. 2019. Preparation of transparent anti-pollution cellulose carbamate regenerated cellulose membrane with high separation ability. International Journal of Biological Macromolecules 139: 332-341.

Zhao, G., Lyu, X., Lee, J., Cui, X. & Chen, W.N. 2019. Biodegradable and transparent cellulose film prepared eco-friendly from durian rind for packaging application. Food Packaging and Shelf Life 21: 100345.

 

*Pengarang surat-menyurat; email: kmsalleh@usm.my

 

   

sebelumnya