Sains Malaysiana 51(8)(2022): 2713-2724

http://doi.org/10.17576/jsm-2022-5108-28

 

Pengoptimuman Pengekstrakan Lemak Biji Jeruk Mangga (Mangifera indica L.) menggunakan Kaedah Respons Permukaan dan Analisis Lipid

(Extraction Optimization of Pickled Mango (Mangifera indica L.) Seed Butter using Response Surface Methodology and Lipid Analysis)

 

NORHELALIAH ISA1, NOOR-SOFFALINA SOFIAN SENG1,2, WAN AIDA WAN MUSTAPHA1,2,*, MASTURAH MARKOM3 & NUR AFIQAH MOHD AZHARI3

 

¹Jabatan Sains Makanan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

3Jabatan Kejuruteraan Kimia dan Proses, Fakulti Kejuruteraan dan Alam Bina,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 27 Februari 2022/Diterima: 22 April 2022

 

Abstract

Sisa biji jeruk mangga (PMS) daripada industri jeruk mangga boleh meningkatkan kos pengeluaran dan pencemaran alam sekitar. Kajian terdahulu mendapati lemak biji mangga boleh dijadikan punca alternatif lemak koko (CBA) dalam penghasilan coklat. Oleh itu, penyelidikan ini dijalankan bagi mengetahui hasil ekstrak optimum lemak biji jeruk mangga (MPB) melalui tiga kaedah pengekstrakan iaitu maserasi, Soxhlet dan pengekstrakan bendalir lampau genting-karbon dioksida (SFE-CO2) dengan menggunakan kaedah respons permukaan-reka bentuk komposit berpusat (RSM-CCD). Keputusan parameter optimum adalah seperti berikut; maserasi (262 min, 100 mL heksana dengan 4.40% hasil); Soxhlet (300 min, 150 mL heksana dengan 7.87% hasil) dan SFE-CO2 (297 bar, 64 °C dengan 6.66% hasil). MPB yang diekstrak daripada semua kaedah dibandingkan dengan lemak koko komersial (CCB). MPB mengandungi asid lemak perlu (EFA) dan omega-3 yang tinggi serta lemak tepu yang rendah berbanding CCB. MPB ekstrak daripada SFE-CO2 mempunyai asid lemak dan profil pencairan yang hampir sama dengan CCB. SFE-CO2 juga mengekstrak lebih banyak EFA dan omega-3 (p<0.05) daripada maserasi dan Soxhlet. Oleh itu, MPB ekstrak daripada SFE-CO2 berpotensi sebagai punca CBA yang terbaik dalam penghasilan coklat.

Kata kunci: Analisis lipid; lemak; pengekstrakan; pengoptimuman

Abstrak

Pickled mango seed (PMS), a waste from mango pickle industry could increase cost production and environmental pollution. A previous study found that mango seed butter could be a cocoa butter alternative (CBA) in chocolate. Hence, a study was conducted to compare mango pickled seed butter (MPB) yield; extracted from MPS through three extraction methods by using response surface methodology-central composite design (RSM-CCD). The optimum extraction conditions were identified as follows; maceration (262 mins, 100 mL hexane with 4.40% yield); Soxhlet (300 mins, 150 mL hexane with 7.87% yield) and supercritical fluid extraction carbon dioxide (SFE-CO2) (297 bar, 64 °C with 6.66% yield). MPB extracted from all types of methods were compared to commercial cocoa butter (CCB). The results showed that MPB contained higher essential fatty acid (EFA) and omega-3 and less saturated fat than CCB. MPB extracted from SFE-CO2 showed the closest fatty acids composition and melting profiles to CCB. Furthermore, SFE-CO2 was able to extract more EFA and omega-3 (p<0.05) compared to the maceration and Soxhlet methods. Hence, MPB extracted from SFE-CO2 could be the best source of CBA in chocolate production. 

 

Keywords: Butter; extraction; lipid analysis; optimization

 

RUJUKAN

AOCS. 2011. Official Methods of the American Oil Chemist’s Society (AOCS) Vol. Cd 8b-90. Champaign, IL: AOCS Press.

Belwal, T., Dhyani, P., Bhatt, I.D., Rawal, R.S. & Pande, V. 2016. Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM). Food Chemistry 207: 115-124.

Bhattacharya, S. 2021. Central Composite Design for Response Surface Methodology and Its Application in Pharmacy. DOI:10.5772/intechopen. 95835.

Fadzel, F.M., Salimon, J. & Derawi, D. 2021. Low-energy separation technique on purification of unsaturated fatty acids of palm stearin using methanol crystallization method. Sains Malaysiana 50(1): 151-160. http://dx.doi.org/10.17576/jsm-2021-5001-15.

FAO Statistical Database. 2015. Food and Agriculture Organization of the United Nations. http://faostat.fao.org/site/339/default.aspx.

Hasibuan, E. & Gultom, E. 2021. The effect of method, type of solvent and extraction time towards the yield of oil on essential oil extraction from lime peel (Citrus aurantifolia). IOP Conference Series: Material Sciences and Engineering 1122: 12-108.

Hassim, N., Markom, M., Anuar, N., Dewi, K.H., Baharum, S.N. & Mohd Noor, N. 2015. Antioxidant and antibacterial assay on Polygonum minus extracts: Different extraction methods. International Journal of Chemical Engineering 2015: 826709.

Hewavitharana, G.G., Dilini, N.P., Navaratne, S.B. & Wickramasinghe, I. 2020. Extraction methods of fat from food samples and preparation of fatty acid methyl esters for gas chromatography: A review. Arabian Journal of Chemistry 13: 6865-6875.

Isa, N., Sofian-Seng, N.S. & Wan-Mustapaha, W.A. 2021. Ekstrak lemak sisa biji jeruk mangga (Mangifera indica L.) menggunakan pengekstrakan bendalir lampau-genting dan perbandingannya dengan lemak koko (Theobroma cacao L.). Sains Malaysiana 50(7): 1901-1911.

Ishak, I., Ghani, M.A. & Nasri, N.N.S. 2020. Effect of extraction solvents on the oxidative stability of chia seed (Salvia hispanica L.) oil stored at different storage temperatures. Food Research 4(6): 2103-2113.

Islam, S., Saroop, S., Bheem, V., Harnarayan, P. & Naraynsingh, V. 2018. Mango seed causing acute large bowel obstruction in descending colon-world’s first reported case. International Journal of Surgery Case Reports 51: 125-129.

Jahurul, M., Zaidul, I., Ghafoor, K., Al-Juhaimi, F., Nyam, K. & Norul Aini, N. 2015. Mango (Mangifera indica L.) by-products and their valuable components: A review. Food Chemistry 183: 173-180.

Jahurul, M.H.A., Norulaini, N., Sahena, N., Jaffri, F. & Mohd Omar, A.K. 2014. Supercritical carbon dioxide extraction and studies of mango seed kernel for cocoa butter analogy fats. CyTa-Journal of Food 12(1): 97-103.

Jin, J., Zheng, L., Zhang, J., Xie, D., Wang, X., Huang, J., Jin, Q. & Wang, X. 2017. Production of sn-1,3-distearoyl-2-oleoyl-glycerol-rich fats from mango kernel fat by selective fractionation using 2-methylpentane based 485 isohexane. Food Chemistry 234: 46-54.

Kosasih, W., Rosmalina, R.T., Risdian, C., Priatni, S. & Saepudin, E. 2021. Production of omega-3 fatty acids by enzymatic hydrolysis from lemuru fish by-products. Sains Malaysiana 50(8): 2271-2282. https://doi.org/10.17576/jsm-2021-5008-11

Khaw, K.Y., Parat, M.O., Shaw, P.N. & Falconer, J.R. 2017. Solvent supercritical fluid technologies to extract bioactive compounds from natural sources: A review. Molecules 22(7): 1186.

Mas’ud, F., Mahendradatta, M., Laga, A. & Zainal, Z. 2017. Optimization of mango seed kernel oil extraction using response surface methodology. Oilseeds & Fats Crops and Lipids 24(5): 1-7.

Meng, H., Matthan, N.R., Wu, D., Li, L., Rodríguez- Morató, J., Cohen, R., Galluccio, J.M., Dolnikowski, G.G. & Lichtenstein, A.H. 2019. Comparison of diets enriched in stearic, oleic, and palmitic acids on inflammation, immune response, cardiometabolic risk factors, and fecal bile acid concentrations in mildly hypercholesterolemic postmenopausal women-randomized crossover trial. American Journal of Clinical and Nutritional 110: 305-315.

Mensink, R.P. 2016. Effects of Saturated Fatty Acids on Serum Lipids and Lipoproteins: A Systematic Review and Regression Analysis. Geneva, Switzerland: World Health Organization.

Mohamad Said, K.A. & Mohamed Amin, M.A. 2015. Overview on the response surface methodology (RSM) in extraction processes. Journal of Applied Science & Process Engineering 2(1): 8-17.

Morata, A., González, C., Tesfaye, W., Loira, I. & Suárez-Lepe, J.A. 2019. Chapter 3 -Maceration and fermentation: New technologies to increase extraction. In Red Wine Technology, edited by Morata, A. Massachusetts: Academic Press. pp. 35-49.

Saidin, S.M. & Ramli, N. 2010. Melting behaviour of binary mixtures of palm mid fraction and rice bran oil. Sains Malaysiana 39(5): 785-790.

Santos, S., Oliveira, A. & Lopes, C. 2013. Systematic review of saturated fatty acids on inflammation and circulating levels of adipokines. Nutritional Research 33(9): 687-695.

Saroj, K.S. 2018. Standardization of recipe and method for mango pickle. International Journal of Chemical Studies 6(2): 2033-2037.

Shao, Q., Huang, Y., Zhou, A., Guo, H., Zhang, A. & Wang, Y. 2014. Application of response surface methodology to optimize supercritical carbon dioxide extraction of volatile compounds from Crocus sativus. Journal Science Food Agriculture 94(7): 1430-1436.

Sikdar, D.C., Siri, H., Vinay, S., Varsha, S. & Rao, R. 2017. Solvent extraction of mango (Mangifera indica L.) seed kernel oil and its characterization. International Journal of Technical Reseach and Applications 5(4): 43-47. 

Sodeifian, G.S.A., Sajadian, N.A. & Ardestani, S. 2017. Supercritical fluid extraction of omega-3 from Dracocephalum kotchyi seed oil: Process optimization and oil properties. Journal Supercritical Fluids 119: 139-149.

Soh, S.H., Agarwal, S., Jain, A., Lee, L.Y., Chin, S.K. & Jayaraman, S. 2019. Mathematical modeling of mass transfer in supercritical fluid extraction of patchouli oil. Material Science Engineering 1(4): e12051.                 

Wang, L., Wang, X., Wang, P., Xiao, Y. & Liu, Q. 2016. Optimization of supercritical carbon dioxide extraction, physicochemical and cytotoxicity properties of Gynostemma pentaphyllum seed oil: A potential source of conjugated linolenic acids. Separation and Purification Technology 159: 147-156.

Yadav, K.K. & Singh, S.P. 2018. Mango: History origin and distribution. Journal of Pharmacognosy and Phytochemistry 6(6): 1257-1262.

Yamanaka, K. & Ohtaki, H. 2007. Supercritical fluids and reductions in environmental pollution. In Thermodynamics, Solubility and Environmental Issues, edited by Letcher T.M. Elsevier. pp. 51-84.

Ye, G., Ma, L., Li, L., Liu, J., Yuan, S. & Huang, G. 2017. Application of Box–Behnken design and response surface methodology for modeling and optimization of batch floatation of coal. International Journal of Coal Preparation and Utilization 40(1): 1-15. http://dx.doi.org/10.1080/19392699.2017.1350657

Zhou, J., Gullón, B., Wang, M., Gullón, P., Lorenzo, J.M. & Barba, F.J. 2021. The application of supercritical fluids technology to recover healthy valuable compounds from marine and agricultural food processing by-products: A review. Processes 9: 357.

 

*Pengarang untuk surat-menyurat; email: wanaidawm@ukm.edu.my

 

   

sebelumnya