Sains Malaysiana 51(9)(2022):
2803-2816
http://doi.org/10.17576/jsm-2022-5109-06
Comparative Arsenic Tolerance and Accumulation
Potential between Wild Tagetes patula and Tagetes minuta
(Toleransi dan Potensi
Pengumpulan Arsenik Perbandingan antara Tagetes patula dan Tagetes minuta Liar)
IRUM
SHAHZADI1,*, MOHAMMAD MAROOF SHAH1, IRRUM SALEEM AKHTAR1,
TARIQ ISMAIL2, RAZA AHMAD1, ISMAT NAWAZ3, MARIA SIDDIQUE4, SOFIA BAIG5,
AYESHA BAIG1 & UMMARA WAHEED6
1Department
of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060,
Pakistan
2Department
of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060,
Pakistan
3Department
of Biosciences, COMSATS University Islamabad, 45550, Pakistan
4Department
of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus,
22060, Pakistan
5Institute of
Environmental Sciences and Engineering (IESE), National University of Sciences
and Technology, H-12, Islamabad, 44000, Pakistan
6Institute of Plant Breeding & Biotechnology, MNS University of
Agriculture, Multan, Pakistan
Diserahkan: 21 Ogos 2021/Diterima: 2 April 2022
Abstract
Arsenic
(As) is a bioactive metalloid that is highly toxic to humans, animals, and
plants. Environmental contamination of As especially in groundwater increases due to natural and anthropogenic
activities.
The present study was performed to evaluate the potential of wild Tagetes species for the phytoremediation of As contaminated
soil/water. This comparative research aims to analyze As accumulation and
tolerance in two wild species of Tagetes, T. minuta and T. patula. The 20 days old seedlings were grown hydroponically and exposed to the
different concentrations of As, 0, 50, 150, and 300 µM As2O3 for 1-, 4- and 7- days intervals. Effect of As stress was measured
on the rate of seed germination, growth parameters like fresh and dry biomass
weight, root/shoot length, chlorophyll contents and As contents in root and
shoot in both Tagetes species. Increasing
concentration of As restricts the growth activity of T. minuta with toxicity symptoms on leaves such as chlorosis. Accumulation of As in the
shoot was significantly (p ≤ 0.01) high (634 µg g-1 DW) in T. patula as compared to T. minuta (397 µg g-1 DW) at 300 µM As2O3.
Both Tagetes species exhibited high variation for As
tolerance parameters as well as for As accumulation patterns. Comparatively
good tolerance and accumulation of As in T. patula suggests that this species could be used in phytoextraction and re-vegetation in As contaminated sites.
Keywords: Arsenic; phytoremediation; Tagetes minuta; Tagetes patula
Abstrak
Arsenik (As) ialah metaloid bioaktif yang sangat toksik kepada manusia, haiwan dan tumbuhan. Pencemaran persekitaran disebabkan As terutamanya pada
air dalam tanah meningkat disebabkan oleh aktiviti semula jadi dan antropogen. Kajian ini dilakukan untuk menilai potensi spesies Tagetes liar sebagai fitoremediasi tanah/air yang tercemar As.
Kajian perbandingan ini bertujuan untuk menganalisis pengumpulan dan kerintangan As dalam dua spesies Tagetes liar, T. minuta dan T. patula. Anak pokok berusia 20 hari telah ditanam secara hidroponik dan didedahkan kepada kepekatan As berbeza iaitu 0, 50, 150 dan 300
µM As2O3 untuk selang 1-, 4- dan 7 hari. Kesan tekanan As diukur dengan melihat kepada kadar percambahan biji benih, parameter pertumbuhan seperti berat biojisim segar dan kering, panjang akar/pucuk, kandungan klorofil dan kandungan As dalam akar dan pucuk pada kedua-dua spesies Tagetes. Peningkatan kepekatan As menyekat aktiviti pertumbuhan T. minuta dengan gejala ketoksikan seperti klorosis pada daun. Pengumpulan As dalam pucuk T. patula adalah tinggi (634 µg g-1 DW) dan berbeza secara bererti (p≤0.01) berbanding T. minuta (397 µg g-1 DW) pada 300 µM As2O3. Terdapat variasi yang tinggi bagi parameter berkait kerintangan As begitu juga dengan corak pengumpulan As pada kedua-dua spesies Tagetes. Kerintangan dan pengumpulan As dalam T. patula yang agak baik menunjukkan bahawa spesies ini boleh digunakan dalam fitoekstraksi dan boleh ditanam di lokasi tercemar As.
Kata kunci: Arsenik; fitoremediasi; Tagetes minuta; Tagetes patula
RUJUKAN
Abbas, G., Murtaza, B., Bibi, I., Shahid, M., Niazi, N.K., Khan, M.I., Amjad, M., Hussain, M. &
Natasha. 2018. Arsenic uptake, toxicity, detoxification, and speciation in
plants: Physiological, biochemical, and molecular aspects. International
Journal of Environmental Research and Public Health 15(1): 59.
Abid, R., Mahmood, S., Zahra, S., Ghaffar, S., Malik,
M. & Noreen, S. 2021. Jatropha curcas L.
and Pongamia pinnata L. exhibited differential growth and bioaccumulation pattern irrigated with
wastewater. Sains Malaysiana 50(3): 559-570.
Ahmad, A.M., Gaur, R. & Gupta, M. 2012. Comparative
biochemical and RAPD analysis in two varieties of rice (Oryza sativa)
under arsenic stress by using various biomarkers. Journal of Hazardous
Materials 217-218: 141-148.
Angulo-Bejarano, P.I.,
Puente-Rivera, J. & Cruz-Ortega, R. 2021. Metal and metalloid toxicity in
plants: An overview on molecular aspects. Plants 10(4): 635.
Anjum, S.A., Tanveer, M.,
Hussain, S., Ashraf, U., Khan, I. & Wang, L. 2017. Alteration in growth,
leaf gas exchange, and photosynthetic pigments of Maize plants under combined
cadmium and arsenic stress. Water, Air & Soil Pollution 228: 13.
Antenozio, M.L., Giannelli, G., Marabottini, R.,
Brunetti, P., Allevato, E., Marzi,
D., Capobianco, G., Bonifazi, G., Serranti,
S., Visioli, G., Stazi,
S.R. & Cardarelli, M. 2021. Phytoextraction efficiency of Pteris vittata grown on a naturally As‑rich soil and
characterization of As‑resistant rhizosphere bacteria. Scientific
Reports 11: 6794.
Armendariz,
A.L., Talano, M.A., Travaglia, C., Reinoso, H., Oller, A.L.W. &
Agostini, E. 2016. Arsenic toxicity in soybean seedlings and their attenuation
mechanisms. Plant Physiology and Biochemistry 98: 119-127.
Arnon, D.I. 1949. Copper
enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24(1): 1-15.
Atabaki, N., Shaharuddin, A.A., Ahmad, A.S., Nulit,
R. & Abiri, R. 2020. Assessment of water mimosa (Neptunia oleracea Lour.)
morphological, physiological, and removal efficiency for phytoremediation of
arsenic-polluted water. Plants 9(11): 1500.
Baker, A.J.M. & Brooks, R.R. 1989. Terrestrial
higher plants which hyperaccumulate metallic elements - A review of their
distribution, ecology and phytochemistry. Biorecovery 1: 811.
Banerjee, A., Sarkar, S., Gorai, S., Kabiraj, A. & Bandopadhyay, R. 2021. High
arsenic tolerance in Brevundimonas aurantiaca PFAB1 from an arsenic-rich Indian hot spring. Electronic
Journal of Biotechnology 53: 1-7.
Behera, K.K. 2014. Phytoremediation,
Transgenic Plants and Microbes. Switzerland: Springer, Cham. pp. 65-85.
Bianconi, D., Pietrini, F., Massacci, A. & Iannelli, M.A. 2013. Uptake of cadmium by Lemna minor, a (hyper?-) accumulator plant
involved in phytoremediation applications. E3S Web of Conference 1:
13002.
Chandrakar, V., Naithani, S.C. & Keshavkant, S. 2016. Arsenic-induced metabolic disturbances
and their mitigation mechanisms in crop plants: A review. Biologia 71: 367-377.
Chintakovid, W., Visoottiviseth, P., Khokiattiwong, S. & Lauengsuchonkul,
S. 2007. Potential of the hybrid marigolds for arsenic phytoremediation and
income generation of remediators in Ron Phibun District, Thailand. Chemosphere 70(8): 1532-1537.
Choudhury, M.R., Islam, M.S., Ahmed, Z.U. & Nayar, F. 2016. Phytoremediation of heavy metal
contaminated Buriganga riverbed sediment by Indian
mustard and marigold plants. Environmental
Progress & Sustainable
Energy 35(1): 117-124.
Chung, J., Yu, S. & Hong, Y.S. 2014. Environmental
source of arsenic exposure. Journal of Preventive Medicine and Public Health 47(5): 253-257.
Coakley, S., Cahill, G., Enright, A.M., Rourke, B.O.
& Petti, C. 2019. Cadmium hyperaccumulation and translocation in impatiens glandulifera: From foe to friend? Sustainability 11(8): 5018.
Coelho, L.C., Bastos, A.R.R., Pinho,
P.J., Souza, G.A., Carvalho, J.G., Coelho, V.A.T., Oliveira, L.C.A., Domingues, R.R. & Faquin, V.
2017. Marigold (Tagetes erecta):
The potential value in the phytoremediation of chromium. Pedosphere 27(3): 559-568.
Danh, L.T., Truong, P., Mammucari,
R. & Foster, N.A. 2014. Critical review of the arsenic uptake mechanisms
and phytoremediation potential of Pteris vittate. International Journal of Phytoremediation 16(5): 429-453.
Dobslaw, D., Woiski, C., Kiel, M., Kuch, B. & Breuer, J. 2021. Plant uptake,
translocation and metabolism of PBDEs in plants of food and feed industry: A review.Reviews in Environmental Science and Biotechnology 20: 75-142.
Dushenko, W.T., Bright, D.A.
& Reimer, K.J. 1995. Arsenic bioaccumulation and toxicity in aquatic
macrophytes to gold-mine effluent: Relationship with environmental
partitioning, metal uptake and nutrients. Aquatic Botany 50: 141-158.
Elisa, C., Alisson, B. & Borges, C. 2020. Use of
plants in the remediation of arsenic contaminated waters. Water Environment
Research 92(2): 1669-1676.
Hashim, M.A., Mukhopadhyay,
S., Sahu, J.N. & Sengupta, B. 2011. Remediation
technologies for heavy metal contaminated ground water. Journal of
Environmental Management 92(10): 2355-2388.
Hong, H.S., Choi, A.S., Yoon, H. & Cho, K.S. 2011.
Screening of Cucumis sativus as a new arsenic-accumulating plant and its
arsenic accumulation in hydroponic culture. Environmental Geochemistry and
Health 33(Supplementary 1): 143-149.
Jiang, Y., Lei, M., Duan, L. & Philip, L. 2015. Integrating
phytoremediation with biomass valorisation and
critical element recovery: A UK contaminated land perspective. Biomass and
Bioenergy 83: 328-339.
Kumar, S., Dubey, R.S.,
Tripathi, R.D., Chakrabarty, D. & Trivedi, P.K. 2015. Omics and
biotechnology of arsenic stress and detoxification in plants: Current updates
and prospective. Environment International 74: 221-230.
Leblanc,
M.S., Mckinney, E.C. Meagher, R.B. & Smith, A.P. 2013. Hijacking
membrane transporters for arsenic phytoextraction. Journal of Biotechnology 163(1): 1-9.
Li, C.X., Shu-Li, F., Yun, S., Li-Na, J., Yang, L.U.
& Xiao-Li, H. 2007. Effects of arsenic on seed germination and
physiological activities of wheat seedlings. Journal of Environmental
Sciences 19(6): 725-732.
Li, N., Wang, J. & Song, W.Y. 2016. Arsenic uptake
and translocation in plants. Plant Cell Physiology 57(1): 4-13.
Li, R., Dong,
F., Yang,
G., Zhang,
W., Zong, M., Nie,
X., Zhou,
L., Babar,
A., Liu,
J., Ram,
K.B., Fan,
C. & Zeng Y. 2020. Characterization of arsenic and uranium pollution surrounding a
uranium mine in southwestern China and phytoremediation potential. Polish
Journal of Environmental Studies 29(1): 173-185.
Li, Y., Sun, Y., Jiang, J. & Liu, J. 2019.
Spectroscopic determination of leaf chlorophyll content and color for genetic
selection on Sassafras tzumu. Plant Methods 15: 73.
Lin, A., Zhang, X., Zhu, Y.G. & Zhao, F.J. 2008.
Arsenate-induced toxicity: Effects on antioxidative enzymes and DNA damage in Vicia faba. Environmental
Toxicology and Chemistry 27(2): 413-419.
Lyubenova, L., Pongrac, P., Vogel-Mikus, K., Mezek, G.K., Vavpetic, P., Grlj, N., Regvar, M., Pelicon, P. & Schroder, P. 2013. The fate of arsenic,
cadmium and lead in Typha latifolia: A case
study on the applicability of micro-PIXE in plant ionomics. Journal of Hazardous Material 15: 371-378.
Madanan, M.T., Shah, I.K.,
George, K. & Kaushal, R.K. 2021. Application of aztec marigold (Tagetes erecta L.) for phytoremediation of heavy metal polluted lateritic soil. Environmental
Chemistry and Ecotoxicology 3: 17-22.
Mandal, P. 2017. An insight
of environmental contamination of arsenic on animal health. Emerging
Contaminants3(1): 17-22.
Nahar, N., Rahman, A., Nawani,
N.N., Ghosh, S. & Mandal, A. 2017. Phytoremediation of arsenic from the contaminated soil using transgenic
tobacco plants expressing ACR2 gene of Arabidopsis thaliana. Journal of Plant Physiology 218: 121-126.
Nawa, I., Iqbal, M., Bliek, M. & Schat, H. 2017.
Salt and heavy metal tolerance and expression levels of candidate tolerance
genes among four extremophile Cochlearia species with contrasting habitat
preferences. Science of the Total Environment 585: 731-741.
Pietrini, F., Iori, V., Pietrosanti, L., Zacchini, M. & Massacci, A.
2020. Evaluation of multiple responses associated with arsenic tolerance and
accumulation in Pteris vittata L. plants
exposed to high As concentrations under hydroponics. Water 12(1): 3127.
R Core Team. 2018. R: A Language and Environment
for Statistical Computing. Vienna: Austria.
Reichman, S.M. 2002. The responses of plants to metal
toxicity: A review focusing on copper, manganese & zinc. Australian
Minerals and Energy Environment Foundation 14: 22-26.
Sahoo, P.K. & Kim, K. 2013. A review of the
arsenic concentration in paddy rice from the perspective of geoscience. Geosciences Journal 17: 107-122.
Salim, F., Setiadi, Y., Sopandie, D. & Yani, M. 2020.
Adaptation selection of plants for utilization in phytoremediation of soil
contaminated by crude oil fadliah. HAYATI Journal
of Biosciences 27(1): 45-56.
Sathya, V., Mahimairaja, S.,
Bharani, A. & Krishnaveni, A. 2020. Influence of
soil bioamendments on the availabilty of nickel and phytoextraction capability of Marigold from the contaminated
soil. International Journal of Plant & Soil Science 31(5): 1-12.
Sghaier, D.B.,
Duarte, B., Bankaji, I., Caçador,
I. & Sleimi, N. 2015. Growth,
chlorophyll fluorescence and
mineral nutrition in the halophyte Tamarix gallica cultivated
in combined stress conditions: Arsenic and
NaCl. Journal of Photochemistry
and Photobiology 149: 204-214.
Shahzadi, I.,
Ahmad, R., Hassan, A. & Shah, M.M. 2010. Optimization of DNA extraction from seeds
and fresh leaf tissues of wild marigold (Tagetes minuta) for polymerase chain reaction analysis. Genetics
and Molecular Research 9(1): 386-393.
Singh, H.P., Batish, D.R.,
Kohli, R.K. & Arora, K. 2007. Arsenic-induced root growth inhibition in
mung bean (Phaseolus aureus Roxb.) is due to
oxidative stress resulting from enhanced lipid peroxidation. Plant Growth
Regulator 53: 65-73.
Singh, R., Singh, S.,
Parihar, P., Singh, V.P. & Prasad, S.M. 2015. Arsenic contamination, consequences
and remediation techniques: A review. Ecotoxicology and Environmental Safety 112: 247-270.
Souri, Z.,
Karimi, N. & Sandalio, L.M. 2017.
Arsenic hyperaccumulation strategies: An overview. Frontiers in Cell
and Developmental Biology 5: 67.
Stoeva, N. & Bineva, T. 2003.
Oxidative changes and photosynthesis in oat plants grown in As contaminated
soil. Bulgarian Journal of Plant Physiology 29: 87.
Tripathi, R.D., Srivastava, S., Mishra, S., Singh, N.,
Tuli, R., Gupta, D.K. & Maathuis, F.J.M. 2007.
Arsenic hazards: Strategies for tolerance and remediation by plants. Trends
in Biotechnology 25: 158.
Wei, J.L., Lai, H.Y. & Chen, Z.S. 2012. Chelator
effects on bioconcentration and translocation of cadmium by hyperaccumulators, Tagetes patula and Impatiens walleriana. Ecotoxicology and Environmental
Safety 84(4): 173-178.
Wellburn, A.R. 1994. The spectral
determination of chlorophylls a and b, as well as total carotenoids, using
various solvents with spectrophotometers of different resolution. Journal of
Plant Physiology 144(3): 307-313.
Wiszniewska, A. 2021. Priming
Strategies for benefiting plant performance under toxic trace metal exposure. Plants 10(4): 623.
Yanitch, A., Brereton, N.J.,
Gonzalez, E., Labrecque, M., Joly, S. & Pitre, F.E. 2017. Transcriptomic response of purple willow
(Salix purpurea) to arsenic stress. Frontiers
in Plant Sciences 8: 1115.
Zvobgo, G., Sehar, S., Lwalaba, J., Mapodzeke, J.M. & Zhang, G.P. 2018. The tolerance index
and translocation factor were used to identify the barley genotypes with high
arsenic stress tolerance. Communications in Soil Science and Plant
Analysis 49(1): 50-62.
*Pengarang untuk surat-menyurat; email: irumayaz@cuiatd.edu.pk
|