Sains Malaysiana 51(9)(2022):
2829-2842
http://doi.org/10.17576/jsm-2022-5109-08
Edible Bird’s Nest, a Valuable Glycoprotein Source:
Current Research Prospects and Challenges in Malaysia
(Sarang Burung Walit, Punca Glikoprotein Bernilai Tinggi: Prospek Penyelidikan
dan Cabaran Semasa di Malaysia)
KEVSER
IRFAN UNAL1, LEE SIN CHANG1,3, WAN AIDA WAN MUSTAPHA1,2,
NOORUL SYUHADA MOHD RAZALI1,2, ABDUL SALAM BABJI1,2 &
SENG JOE LIM1,2*
1Department
of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor Darul Ehsan, Malaysia
2Innovation
Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
3Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University Kuala Lumpur, 56000 Cheras, Kuala Lumpur, Malaysia
Diserahkan: 6 Januari 2022/Diterima: 14 April 2022
Abstract
Edible bird's nest (EBN) is a salivary secretion of swiftlets which
consist of protein and carbohydrate rich glycoproteins. This natural ingredient
is very valuable, nutritional and medically valuable. The EBN industry have
grown rapidly and benefited the Malaysian economy, hence, it is viewed
seriously and it is actively supported by the government. This review discusses
the progress and development of EBN industry as well as the R&D activities
and endeavours especially that which involves deriving peptides with biological
activities from EBN and its by-product sources. Many studies have documented
the therapeutic properties of EBN such as antiaging, antiviral, antioxidant,
and antihypertensive. Studies have also been conducted to produce glycoprotein
hydrolysates from EBN through enzymatic hydrolysis, and findings showed that
these bioactive peptides increase solubility as well as antioxidant and
antihypertensive activities. Enzymatic hydrolysis breaks long protein chains at
specific sites and releases amino acids and small peptides with lower molecular
weights. The EBN hydrolysates produced can improve bioactivity and overcome
insolubility and low absorption of EBN prepared and consumed through
traditional means. Further studies need to be carried out to optimise EBN
glycoprotein hydrolysates production as well as maximising their
bioavailability and efficacy in the human gastrointestinal system. In addition,
EBN by-products produced during EBN cleaning process should be fully utilised
to recover the high-value glycoproteins, while reducing pollution and wastage.
By enhancing R&D activities of EBN, bioactive glycopeptides produced from
EBN may become an important functional food ingredient for various uses and
innovative value-added products in the future.
Keywords: Bioactive peptides; edible bird’s nest; glycoprotein; hydrolysis;
value-added product
Abstrak
Sarang burung walit (SBW) adalah rembesan air liur burung walit yang
terdiri daripada glikoprotein yang kaya dengan protein dan karbohidrat. Bahan
semula jadi ini sangat berharga, berkhasiat dan mempunyai nilai perubatan.
Perusahaan industri SBW telah berkembang pesat dan menguntungkan ekonomi
Malaysia, justeru, ia dipandang serius dan disokong secara aktif oleh kerajaan.
Ulasan ini membincangkan tentang pengembangan dan pembangunan industri SBW
serta aktiviti dan usaha R&D terutamanya yang melibatkan penghasilan
peptida dengan aktiviti biologi daripada SBW dan produk sampingannya. Pelbagai
kajian telah mendokumentasikan sifat terapeutik SBW seperti antipenuaan,
antivirus, antioksida dan antihipertensi. Banyak kajian juga telah dijalankan
untuk menghasilkan hidrolisat glikoprotein daripada SBW melalui hidrolisis
enzim dan hasil kajian mendapati bahawa peptida bioaktif ini meningkatkan kadar
keterlarutan serta aktiviti antioksida dan antihipertensi. Hidrolisis enzim
memecahkan rantai protein yang panjang di tapak yang khusus dan membebaskan
asid amino dan peptida kecil dengan berat molekul yang lebih rendah. Hidrolisat
SBW yang terhasil dapat meningkatkan bioaktiviti dan mengatasi masalah
ketidaklarutan dan penyerapan SBW yang rendah dalam kaedah penyediaan dan
pengambilan SBW secara tradisi. Kajian selanjutnya harus dijalankan untuk
mengoptimumkan proses penghasilan hidrolisat glikoprotein SBW serta
memaksimumkan bioketersediaan dan keberkesanannya pada sistem gastrousus manusia.
Selain itu, produk sampingan EBN yang terhasil sewaktu proses pembersihan harus
dimanfaatkan sepenuhnya untuk memperoleh semula glikoprotein bernilai tinggi,
sekaligus mengurangkan pencemaran dan pembaziran. Dalam usaha mempergiat
aktiviti R&D SBW, glikopeptida bioaktif yang dihasilkan daripada SBW boleh
menjadi bahan makanan berfungsi yang penting untuk pelbagai kegunaan dan produk
nilai tambah yang inovatif pada masa hadapan.
Kata kunci: Glikoprotein; hidrolisis; peptida bioaktif; produk nilai tambah; sarang burung walit
RUJUKAN
Akmal,
M.N., Intan-Shameha, A.R., Mansor,
R., Ideris, A. & Rahman, A. 2020. High-dose
edible bird’s nest extract (EBN) upregulates ldl-r
via suppression of HMGCR gene expression in HepG2 cell lines. Sains Malaysiana 49(10): 2433-2442.
Ali,
A.A.M., Hidayati Syamimi,
M.N., Chong, P.K., Abdul Salam, B. & Lim, S.J. 2019. Comparison of amino
acids profile and antioxidant activities between edible bird nest and chicken
egg. Malaysian Applied Biology 48(2): 63-66.
Amin,
A.M., Din, K. & Kee Chow, H. 2019. Optimization of enzymatic hydrolysis
condition of edible bird’s nest using protamex to
obtain maximum degree of hydrolysis. Asian Journal of Agriculture and
Biology 7(1): 1-9.
Aminoff,
D. 1961. Methods for the quantitative estimation of N-acetylneuraminic acid and
their application to hydrolysates of sialomucoids. Biochemical
Journal 81(2): 384-392.
Azmi,
N.A., Lee, T.H., Lee, C.H., Hamdan, N. & Cheng, K.K. 2021. Differentiation
unclean and cleaned edible bird’s nest using multivariate analysis of amino
acid composition data. Pertanika Journal of
Science and Technology 29(1): 2174-2020.
Babji, A., Ibrahim, E.S.K., Daud, N.,
Nadia, N., Akbar, H., Ghassem, M., Najafian, L. & Salma, M. 2018. Assessment on bioactive
components of hydrolysed edible bird nest. International Food Research
Journal 25(5): 1936-1941.
Badrulzaman, S.Z.S., Aminan,
A.W., Ramli, A.N.M., Che Man, R. & Wan Azelee,
N.I. 2021. Extraction and characterization of keratin from chicken and swiftlet
feather. Materials Science Forum 1(1): 157-162.
Barchi Jr., J.J. 2013. Mucin‐type
glycopeptide structure in solution: Past, present, and future. Biopolymers 99(10): 713-723.
Bhari, R., Kaur, M. & Singh, R.S.
2021. Chicken feather waste hydrolysate as a superior biofertilizer in
agroindustry. Current Microbiology 78(6): 1-19.
Ben
Hamad Bouhamed, S., Krichen,
F. & Kechaou, N. 2020. Feather protein
hydrolysates: A study of physicochemical, functional properties and antioxidant
activity. Waste and Biomass Valorization 11(1): 51-62.
Callegaro, K., Brandelli,
A. & Daroit, D.J. 2019. Beyond plucking: Feathers
bioprocessing into valuable protein hydrolysates. Waste Management 95:
399-415.
Callegaro, K., Welter, N. & Daroit, D.J. 2018. Feathers as bioresource: Microbial
conversion into bioactive protein hydrolysates. Process Biochemistry 75(1):
1-9.
Careena, S., Sani, D., Tan, S.N., Lim,
C.W., Hassan, S., Norhafizah, M., Kirby, B.P., Ideris, A., Stanslas, J., Hamidon, B.B. & Lim, C.T.S. 2018. Effect of edible
bird’s nest extract on lipopolysaccharide-induced impairment of learning and
memory in Wistar rats. Evidence-Based Complementary and Alternative Medicine 2018(1): 9318789.
Chan,
G.K.L., Wong, Z.C.F., Lam, K.Y.C., Cheng, L.K.W., Zhang, L.M., Lin, H., Dong,
T.T. & Tsim, K.W.K. 2015. Edible bird’s nest, an
Asian health food supplement, possesses skin lightening activities: Identification
of n-acetylneuraminic acid as active ingredient. Journal of Cosmetics,
Dermatological Sciences and Applications 5(4): 262-274.
Chaturvedi,
V., Agrawal, K. & Verma, P. 2021. Chicken feathers: A treasure cove of
useful metabolites and value-added products. Environmental Sustainability 4(1):
231-243.
Cheong,
C.W., Lee, Y.S., Ahmad, S.A., Ooi, P.T. & Phang, L.Y. 2018. Chicken feather valorization by thermal alkaline pretreatment followed by
enzymatic hydrolysis for protein-rich hydrolysate production. Waste
Management 79: 658-666.
Cheong,
C.W., Ahmad, S.A., Ooi, P.T. & Phang, L.Y. 2017. Treatments of chicken feather waste. Pertanika Journal of Scholarly Research Reviews 3(1): 32-41.
Chua,
K.H., Lee, T.H., Nagandran, K., Md Yahaya, N.H., Lee,
C.T., Tjih, E.T.T. & Abdul Aziz, R. 2013. Edible
bird’s nest extract as a chondro-protective agent for human chondrocytes
isolated from osteoarthritic knee: In vitro study. BMC Complementary
and Alternative Medicine 13: 19.
Colombo,
J., Garcia‐Rodenas, C., Guesry,
P.R. & Rey, J. 2003. Potential effects of supplementation with amino acids,
choline or sialic acid on cognitive development in young infants. Acta Paediatrica 92(442): 42-46.
Comb,
D.G. & Roseman, S. 1960. The sialic acids I. The structure and enzymatic
synthesis of N-acetylneuraminic acid. Journal of Biological Chemistry 235(9): 2529-2537.
Comb,
D.G. & Roseman, S. 1958. Composition and enzymatic synthesis of
N-acetylneuraminic acid (sialic acid). Journal of the American Chemical
Society 80(2): 497-499.
Dai,
Y., Cao, J., Wang, Y., Chen, Y. & Jiang, L. 2021. A comprehensive review of
edible bird’s nest. Food Research International 140(1): 109875.
Daud, N.A., Mohamad Yusop,
S., Babji, A.S., Lim, S.J., Sarbini,
S.R. & Hui Yan, T. 2021a. Edible bird’s nest: Physicochemical properties,
production, and application of bioactive extracts and glycopeptides. Food
Reviews International 37(2): 177-196.
Daud, N.A., Yusop,
S.M., Lim, S.J. & Babji, A.S. 2021b. Evaluation
of glycan compound from swiftlet’s edible nest (Aerodramus fuciphagus) as potential prebiotic material. Current
Advances in Chemistry and Biochemistry 4(1): 7-15.
Daliri, E.B., Oh, D.H. & Lee, B.H.
2017. Bioactive peptides. Foods (Basel, Switzerland) 6(5): 32.
Department
of Standards Malaysia. 2010. MS 2333:2010 Good manufacturing practice (GMP) for
processing raw-unclean and raw-clean edible-bird nest (EBN).
Department
of Veterinary Services Malaysia. 2021. Lawatan Kerja YB Menteri Pertanian dan Industri Makanan ke Loji Pemprosesan Sarang Burung Walet: 2. Kuala
Lumpur, Malaysia.
Etty Syarmila,
I.K. 2019. Sarang Burung Walet Suatu Dimensi Baru. Bangi: Penerbit Universiti Kebangsaan Malaysia.
Etty Syarmila,
I.K., Ayub, M.K. & Babji,
A.S. 2014. Effect of enzymatic hydrolysis of pancreatin and alcalase enzyme on some properties of edible bird’s nest hydrolysate. AIP Conference
Proceedings 1614(1): 427-432.
Gan,
J.Y., Chang, L.S., Mat Nasir, N.A., Babji, A.S. &
Lim, S.J. 2020. Evaluation of physicochemical properties, amino acid profile
and bioactivities of edible Bird’s nest hydrolysate as affected by drying
methods. LWT Food Science & Technology 131(1): 109777.
Gausset, Q. 2002. A short history of
birds’ nests management in the Niah Caves (Sarawak). Borneo
Research Bulletin 33(1): 127-140.
Ghassem, M., Arihara,
K., Mohammadi, S., Sani, N.A. & Babji, A.S. 2017.
Identification of two novel antioxidant peptides from edible bird’s nest (Aerodramus fuciphagus)
protein hydrolysates. Food and Function 8(5): 2046-2052.
Guo,
C.T., Takahashi, T., Bukawa, W., Takahashi, N., Yagi,
H., Kato, K., Kazuya, I.P., Miyamoto, D., Suzuki, T. & Suzuki, Y. 2006.
Edible bird’s nest extract inhibits influenza virus infection. Antiviral
Research 70(3): 140-146.
Guo,
L., Wu, Y., Liu, M., Wang, B., Ge, Y. & Chen, Y. 2017. Determination of
edible bird’s nests by FTIR and SDS-PAGE coupled with multivariate analysis. Food
Control 80(1): 259-266.
Halimi, N.M., Kasim, Z.M. & Babji, A.S. 2014. Nutritional composition and solubility of
edible bird nest (Aerodramus fuchiphagus). AIP Conference Proceedings 1614: 476-481.
Hamzah,
Z., Jeyaraman, S., Hashim, O. & Hussin, K. 2016. Application of Fourier transform infrared
spectroscopy on edible bird nest authenticity. Contemporary Issues and
Development in the Global Halal Industry 1(1): 557-566.
Hobbs,
J.J. 2004. Problems in the harvest of edible birds’ nests in Sarawak and Sabah,
Malaysian Borneo. Biodiversity and Conservation 13(12): 2209-2226.
Hou,
Z., Imam, M.U., Ismail, M., Azmi, N.H., Ismail, N., Ideris,
A. & Mahmud, R. 2015. Lactoferrin and ovotransferrin contribute toward antioxidative effects of Edible Bird’s Nest against hydrogen
peroxide-induced oxidative stress in human SH-SY5Y cells. Bioscience,
Biotechnology, and Biochemistry 79(10): 1570-1578.
Hou,
Z.P., Tang, S.Y., Ji, H.R., He, P.Y., Li, Y.H., Dong, X.L., Du, M.N., Maznah, I. & He, W.J. 2021. Edible bird’s nest
attenuates menopause-related bone degeneration in rats via increaing bone estrogen-receptor expression. Chinese Journal
of Integrative Medicine 27(4): 280-285.
Houdret, N., Lhermitte, M., Degand, P. & Roussel, P. 1975. Purification and
chemical study of a Collocalia glycoprotein. Biochimie 57(5): 603-608.
Howe,
C., Lee, L.T. & Rose, H.M. 1961. Collocalia mucoid: A substrate for myxovirus neuraminidase. Archives of Biochemistry and
Biophysics 95(3): 512-520.
Howe,
C., Lee, L.T. & Rose, H.M. 1960. Influenza virus sialidase. Nature 188(4746): 251-252.
Huang,
X., Li, Z., Zou, X., Shi, J., Elrasheid Tahir, H.,
Xu, Y., Zhai, X. & Hu, X. 2019. A low- cost smart
system to analyze different types of edible bird’s
nest adulteration based on colorimetric sensor array. Journal of Food and
Drug Analysis 27(4): 876-886.
Huda,
M.Z., Abu Bakar, M.Z., Goh, Y., Shuhaimi, H., Awang Junaidi, A.H. & Zairi, M.S.
2008. Proximate, elemental and free fatty acids of pre-processed edible bird’s
nest (Aerodramus fuciphagus):
A comparison between regions and type of nest. Journal of Food Technology 6(1): 39-44.
Hun,
L.T., Wani, W.A., Tjih,
E.T.T., Adnan, N.A., Le Ling, Y. & Aziz, R.A. 2015. Investigations into the
physicochemical, biochemical and antibacterial properties of edible bird’s
nest. Journal of Chemical and Pharmaceutical Research 7(7): 228-247.
Hwang,
E., Park, S.W. & Yang, J.E. 2020. Anti-aging, anti-inflammatory, and
wound-healing activities of edible bird’s nest in human skin keratinocytes and
fibroblasts. Pharmacognosy Magazine 16(69): 336-342.
Ismail,
M.Y. 1999. Social control and bird’s nest harvesting among the Idahan: A preliminary observation. Japanese Journal of
Southeast Asian Studies 37(1): 3-17.
Jang,
A. & Lee, M. 2005. Purification and identification of angiotensin
converting enzyme inhibitory peptides from beef hydrolysates. Meat Science 69(4): 653-661.
Jin, J., Okagu,
O.D., Yagoub, A.E.A. & Udenigwe,
C.C. 2021. Effects of sonication on the in vitro digestibility and
structural properties of buckwheat protein isolates. Ultrasonics
Sonochemistry 70(1): 105348.
Kathan, R.H. & Weeks, D.I. 1969.
Structure studies of Collocalia mucoid: I. Carbohydrate and amino acid
composition. Archives of Biochemistry and Biophysics 134(2): 572-576.
Khalid,
S.K.A., Abd Rashed, A., Aziz, S.A. & Ahmad, H. 2019. Effects of sialic acid
from edible bird nest on cell viability associated with brain cognitive
performance in mice. World Journal of Traditional Chinese Medicine 5(4):
214-232.
Kong,
H., Wong, K.H. & Lo, S.C. 2016. Identification of peptides released from
hot water insoluble fraction of edible bird’s nest under simulated
gastro-intestinal conditions. Food Research International 85(1): 19-25.
Lee,
S.H., Qian, Z.J. & Kim, S.K. 2010. A novel angiotensin I converting enzyme
inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive
effect in spontaneously hypertensive rats. Food Chemistry 118(1): 96-102.
Lee,
T.H., Wani, W.A., Lee, C.H., Cheng, K.K., Shreaz, S.,
Wong, S., Hamdan, N. & Azmi, N.A. 2021. Edible bird’s nest: The functional
values of the prized animal-based bioproduct from Southeast Asia - A review. Frontiers
in Pharmacology 12(1): 871-887.
Lee,
Y.S., Phang, L.Y., Ahmad, S.A. & Ooi, P.T. 2016. Microwave-alkali treatment of chicken
feathers for protein hydrolysate production. Waste and Biomass Valorization 7(5): 1147-1157.
Lim,
C.K. & Cranbrook, E.O. 2002. Swiftlets of Borneo: Builders of Edible
Nests. Natural History Publications (Borneo) Sdn.
Bhd.
Lim,
G.W. & Rahman, M.A. 2005. Patterns of genetic variation among white-nest
swiftlets (Aerodramus fuciphagus)
in Malaysia based on partial cytochrome b region. In Wallace in Sarawak - 150
Years Later, edited by Tuen, A.A. & Das, I. Kota Samarahan: Institute of Biodiversity and
Environmental Conservation, Universiti Malaysia
Sarawak.
Lim,
S.J., Chang, L.S., Fazry, S., Mustapha, W.A.W. & Babji, A.S. 2021. Functional food & ingredients from
seaweed, edible bird's nest and tropical fruits: A translational research. LWT-Food
Science and Technology 151: 112164.
Ling,
J.W.A., Chang, L.S., Babji, A.S. & Lim, S.J.
2020. Recovery of value‐added glycopeptides from edible bird’s nest (EBN)
co‐products: Enzymatic hydrolysis, physicochemical characteristics and
bioactivity. Journal of the Science of Food and Agriculture 100(13):
4714-4722.
Maciel, J.L., Werlang,
P.O., Daroit, D.J. & Brandelli,
A. 2017. Characterization of protein-rich hydrolysates produced through
microbial conversion of waste feathers. Waste and Biomass Valorization 8(4): 1177-1186.
Manikkam, V., Vasiljevic, T., Donkor, O.N.
& Mathai, M.L. 2016. A review of potential marine-derived hypotensive and
anti-obesity peptides. Critical Reviews in Food Science and Nutrition 56(1): 92-112.
Mansor, M. & Rahman, M.K.A. 2013. Merekayasa Kearifan Tempatan: Alam dan Manusia. Penang: Penerbit Universiti Sains Malaysia.
Marcone, M.F. 2005. Characterization of
the edible bird’s nest the “Caviar of the East.” Food Research International 38(10): 1125-1134.
Marni,
S., Marzura, M.R., Norzela,
A.M., Khairunnisak, M., Bing, C.H. & Eddy, A.A.
2014. Preliminary study on free sialic acid content of edible bird nest from
Johor and Kelantan. Malaysian Journal of Veterinary Research 5(1): 9-14.
Matsukawa,
N., Matsumoto, M., Bukawa, W., Chiji,
H., Nakayama, K., Hara, H. & Tsukahara, T. 2011. Improvement of bone
strength and dermal thickness due to dietary edible bird’s nest extract in
ovariectomized rats. Bioscience, Biotechnology, and Biochemistry 75(3):
590-592.
Ministry
of Agriculture and Food Industries Malaysia. 2021. National Agrofood Policy
2.0 2021-2030. Malaysia: Putrajaya.
Ministry
of Agriculture and Food Industries Malaysia. 2011. National Agrofood Policy
2011-2020. Malaysia: Putrajaya.
Mintah, B.K., He, R., Dabbour,
M., Golly, M.K., Agyekum, A.A. & Ma, H. 2019. Effect of sonication pretreatment parameters and their optimization on the
antioxidant activity of Hermitia illucenslarvae meal protein hydrolysates. Journal
of Food Processing and Preservation 43(9): e14093.
Mohd. Rashid, R. 2016. Kajian Penandaarasan Teknologi Pertanian Terpilih: Industri Pemprosesan Sarang Burung Walit. Laporan Kajian Sosioekonomi 2015. MARDI. Pusat Penyelidikan Ekonomi dan Sains Sosial. pp.
123-129.
Mohd. Rashid, R., Ahmad Zairy, Z.A. & Mohd Syauqi, N. 2013. Prospek dan cabaran industri sarang burung walit negara. Buletin Teknologi Pusat Penyelidikan Ekonomi dan Pengurusan Teknologi. Institut Penyelidikan dan Kemajuan Pertanian Malaysia
(MARDI). pp. 57-69.
Mohd Syauqi,
N., Ahmad Zairy, Z.A., Mohd.
Rashid, R., Nor Amna A’liah, N.M. & Che Nurul
Akmal, C.M. 2020. Daya saing dan amalan teknologi industri sarang burung walit di Malaysia dan
Indonesia: Satu perbandingan umum. Buletin Teknologi Pusat Penyelidikan Ekonomi dan Pengurusan Teknologi. Institut Penyelidikan dan Kemajuan Pertanian Malaysia
(MARDI). pp. 169-176.
Möller, N.P., Scholz-Ahrens, K.E., Roos, N. & Schrezenmeir, J.
2008. Bioactive peptides and proteins from foods: Indication for health
effects. European Journal of Nutrition 47(4): 171-182.
Muhammad,
N.N., Babji, A.S. & Ayub,
M.K. 2015. Antioxidative activities of hydrolysates from edible birds nest using enzymatic hydrolysis. AIP Conference
Proceedings 1678(1): 50038.
Ng,
S.R., Noor, H.S.M., Ramachandran, R., Tan, H.Y., Ch, S.E., Chang, L.S., Babji, A.S. & Lim, S.J. 2020. Recovery of glycopeptides
by enzymatic hydrolysis of edible bird’s nest: The physicochemical
characteristics and protein profile. Journal of Food Measurement and
Characterization 14(5): 2635-2645.
Noor,
H.S.M., Babji, A.S. & Lim, S.J. 2018. Nutritional
composition of different grades of edible bird’s nest and its enzymatic hydrolysis. AIP Conference Proceedings 1940(1): 20088.
Norhayati, M., Azman, O. & Wan Mohamud,
W.N. 2010. Preliminary study of the nutritional content of Malaysian edible
bird’s nest. Malaysian Journal of Nutrition 16(3): 389-396.
Nurfatin, M.H., Etty Syarmila, I.K., Nur’Aliah,
D., Zalifah, M.K., Babji,
A.S. & Ayob, M.K. 2016. Effect of enzymatic
hydrolysis on angiotensin converting enzyme (ACE) inhibitory activity in
swiftlet saliva. International Food Research Journal 23(1): 141-146.
Nurul
Nadia, M., Babji, A.S., Ayub,
M.K. & Nur‘Aliah, D.
2017. Effect of enzymatic hydrolysis on antioxidant capacity of cave edible
bird’s nests hydrolysate. International Journal of Chemical Technology
Research 10(2): 1100-1107.
Nurul Nadiah, M.N., Mohamad Ibrahim, R., Abu Bakar, M.Z.,
Mahmud, R. & Ab Razak, N.A. 2021. Characterization and extraction influence
protein profiling of edible bird’s nest. Foods 10(10): 2248-2267.
Paul,
T., Das, A., Mandal, A., Halder, S.K., DasMohapatra,
P.K., Pati, B.R. & Mondal, K.C. 2014. Valorization of chicken feather waste for concomitant
production of keratinase, oligopeptides and essential amino acids under
submerged fermentation by Paenibacillus woosongensis TKB2. Waste and Biomass Valorization 5(4): 575-584.
Pozsgay, V., Jennings, H. & Kasper,
D.L. 1987. 4, 8‐Anhydro‐N‐acetylneuraminic acid: Isolation
from edible bird’s nest and structure determination. European Journal of
Biochemistry 162(2): 445-450.
Quek,
M.C., Chin, N.L., Yusof, Y.A., Law, C.L. & Tan, S.W. 2018. Pattern
recognition analysis on nutritional profile and chemical composition of edible
bird’s nest for its origin and authentication. International Journal of Food
Properties 21(1): 1680-1696.
Ramachandran,
R., Babji, A.S. & Sani, N.A. 2018. Antihypertensive
potential of bioactive hydrolysate from edible bird’s nest. AIP Conference
Proceedings 1940(1): 20099-1-20099-7.
Saengkrajang, W., Matan, N. & Matan, N.
2013. Nutritional composition of the farmed edible bird’s nest (Collocalia fuciphaga)
in Thailand. Journal of Food Composition and Analysis 31(1): 41-45.
Sánchez,
A. & Vázquez, A. 2017. Bioactive peptides: A review. Food Quality and
Safety 1(1): 29-46.
Sarmadi, B.H. & Ismail, A. 2010.
Antioxidative peptides from food proteins: A review. Peptides 31(10):
1949-1956.
Shi,
J., Hu, X., Zou, X., Zhao, J., Zhang, W., Holmes, M., Huang, X., Zhu, Y., Li,
Z., Shen, T. & Zhang, X. 2017. A rapid and nondestructive method to determine the distribution map of protein, carbohydrate and sialic
acid on Edible bird’s nest by hyper-spectral imaging and chemometrics. Food
Chemistry 229(1): 235-241.
Sitanggang, A.B., Putri, J.E., Palupi, N.S., Hatzakis, E., Syamsir, E. & Budijanto, S.
2021. Enzymatic preparation of bioactive peptides exhibiting ace inhibitory activity
from soybean and velvet bean: A systematic review. Molecules 26(13):
3822-3836.
Spiro,
R.G. 2002. Protein glycosylation: Nature, distribution, enzymatic formation,
and disease implications of glycopeptide bonds. Glycobiology 12(4):
43R-56R.
Tagliacozzo, E. & Chang, W.C. 2011. Chinese
Circulations: Capital, Commodities, and Networks in Southeast Asia. Duke
University Press.
Tan,
S., Sani, D., Lim, C., Ideris, A., Stanslas, J. & Thiam Seong Lim, C. 2020. Proximate analysis and safety profile of farmed edible bird’s
nest in Malaysia and its effect on cancer cells. Evidence-Based
Complementary and Alternative Medicine 2020: ID8068797.
Thorburn,
C. 2014. The edible birds’ nest boom in Indonesia and South-east Asia: A nested
political ecology. Food, Culture & Society 17(4): 535-553.
Tung,
C.H., Pan, J.Q., Chang, H.M. & Chou, S.S. 2008. Authentic determination of
bird’s nests by saccharides profile. Journal of Food Drug Analysis 16(4): 86-91.
Utomo, B., Rosyidi,
D., Radiati, L.E., Puspaningsih,
N.N.T. & Proborini, W.D. 2014. Protein
characterization of extracted water from three kinds of edible bird nest using
SDS-PAGE CBB staining and SDS-PAGE glycoprotein staining and LC-MS/MS analyses. IOSR Journal of Agriculture and Veterinary Science 7(9): 33-38.
Varki,
A. 2008. Sialic acids in human health and disease. Trends in Molecular
Medicine 14(8): 351-360.
Wang,
B. & Brand-Miller, J. 2003. The role and potential of sialic acid in human
nutrition. European Journal of Clinical Nutrition 57(11): 1351-1369.
Wang,
C.Y., Cheng, L.J., Shen, B., Yuan, Z.L., Feng, Y.Q. & Lu, S. 2019.
Antihypertensive and antioxidant properties of sialic acid, the major component
of edible bird’s nests. Current Topics in Nutraceutical Research 17(4):
376-380.
Wang,
C.C. 1921a. The isolation and the nature of the amino sugar of Chinese edible
birds’ nests. Journal of Biological Chemistry 49(2): 441-452.
Wang,
C.C. 1921b. The composition of Chinese edible birds’ nests and the nature of
their proteins. Journal of Biological Chemistry 49(2): 429-439.
Wang,
H., Zhang, S., Sun, Y. & Dai, Y. 2013. ACE-inhibitory peptide isolated from
fermented soybean meal as functional food. International Journal of Food
Engineering 9(1): 1-8.
Wang,
L.L., Chen, N., Zhang, W.W., Wu, G.H. & Lai, X.P. 2013. Study on a
collagenase protocol to extract DNA from remnant feathers in edible bird’s
nest. Journal of Chinese Medicinal Materials 36(8): 1224-1226.
Wieruszeski, J.M., Michalski, J.C., Montreuil,
J., Strecker, G., Peter-Katalinic, J., Egge, H., Van Halbeek, H., Mutsaers, J.H. & Vliegenthart,
J.F. 1987. Structure of the monosialyl oligosaccharides derived from salivary gland mucin glycoproteins of the Chinese
swiftlet (genus Collocalia). Characterization of novel types of extended core
structure, Gal beta (1---3)[GlcNAc beta (1---6)] GalNAc alpha (1---3) GalNAc(-ol), and of chain
termination, [Gal alpha(1----4)]0-1[Gal beta(1----4)]2GlcNAc beta(1----.). Journal of Biological Chemistry 262(14): 6650-6657.
Wong,
C.F., Chan, G.K.L., Zhang, M.L., Yao, P., Lin, H.Q., Dong, T.T.X., Li, G., Lai,
X.P. & Tsim, K.W.K. 2017. Characterization of
edible bird’s nest by peptide fingerprinting with principal component analysis. Food Quality and Safety 1(1): 83-92.
Wong,
Z., Chan, G., Wu, Q., Poon, K., Chen, Y. & Dong, T. 2018. Completed
digestion of edible bird’s nest releases free N-acetyl- neuraminic acid and
small peptide: An efficiency method to improve functional properties. Food and
Function 9(10): 5139-5149.
Xu,
H., Zheng, L., Xie, Y., Zeng, H., Fan, Q., Zheng, B.
& Zhang, Y. 2019. Identification and determination of glycoprotein of
edible bird’s nest by nanocomposites based lateral flow immunoassay. Food
Control 102(1): 214-220.
Yan,
Y.H., Lim, S.J., Babji, A.S., Rawi,
M.H. & Sarbini, S.R. 2021. Enzymatic hydrolysis: Sialylated mucin (SiaMuc)
glycoprotein of edible swiftlet’s nest (ESN) and its molecular weight
distribution as bioactive ESN SiaMuc-glycopeptide hydrolysate. International Journal of Biological Macromolecules 175(1):
422-431.
Yan,
T.H., Babji, A.S., Lim, S.J. & Sarbini, S.R. 2021. A systematic review of edible
Swiftlet’s nest (ESN): Nutritional bioactive compounds, health benefits as
functional food, and recent development as bioactive ESN glycopeptide
hydrolysate. Trends in Food Science and Technology 115(1): 117-132.
Yao,
Y., Yuan, X., Wang, M., Han, L. & Liu, X. 2021. Efficient pretreatment of waste protein recovery from bovine bones
and its underlying mechanisms. Waste and Biomass Valorization 12(1): 5413-5423.
Yeo,
B.H., Tang, T.K., Wong, S.F., Tan, C.P., Wang, Y., Cheong, L.Z. & Lai, O.M.
2021. Potential residual contaminants in edible bird’s nest. Frontiers in
Pharmacology 12(1): 312.
Yew,
M.Y., Koh, R.Y., Chye, S.M., Zainal Abidin, S.A., Othman, I. & Ng, K.Y. 2019. Neurotrophic
properties and the de novo peptide sequencing of edible bird’s nest
extracts. Food Bioscience 32: 100466.
You,
Y., Cao, Y., Guo, S., Xu, J., Li, Z., Wang, J. & Xue,
C. 2015. Purification and identification of α 2–3 linked sialoglycoprotein and α 2–6 linked sialoglycoprotein in edible bird’s nest. European Food Research and Technology 240(2): 389-397.
Zainab,
H., Jeyaraman, S., Othman, H. & Kamarudin, H. 2015. Waste to wealth for the edible bird
nest industry. Applied Mechanics and Materials 754-755: 990-997.
Zhao,
R., Li, G., Kong, X.J., Huang, X.Y., Li, W., Zeng, Y.Y. & Lai, X.P. 2016.
The improvement effects of edible bird’s nest on proliferation and activation
of B lymphocyte and its antagonistic effects on immunosuppression induced by
cyclophosphamide. Drug Design, Development and Therapy 10: 371-381.
Zou,
T.B., He, T.P., Li, H.B., Tang, H.W. & Xia, E.Q. 2016. The
structure-activity relationship of the antioxidant peptides from natural
proteins. Molecules 21(1): 72-85.
Zulkifli, A.S., Babji,
A.S., Lim, S.J., Teh, A.H., Daud,
N.M. & Rahman, H.A. 2019. Effect of different hydrolysis time and enzymes
on chemical properties, antioxidant and antihyperglycemic activities of edible
bird nest hydrolysate. Malaysian Applied Biology 48(2): 149-156.
*Pengarang untuk surat-menyurat; email:
joe@ukm.edu.my
|