Sains Malaysiana 52(2)(2023): 655-667

http://doi.org/10.17576/jsm-2023-5202-25

 

On the Earthquake Distribution Modeling in Sumatra by Cauchy Cluster Process: Comparing Log-Linear and Log-Additive Intensity Models

(Mengenai Pemodelan Taburan Gempa Bumi di Sumatera oleh Proses Kelompok Cauchy: Membandingkan Model Keamatan Log-Linear dan Log-Tambahan)

 

TABITA YUNI SUSANTO, ACHMAD CHOIRUDDIN* & JERRY DWI TRIJOYO PURNOMO


Department of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember (ITS), Surabaya, Indonesia

 

Diserahkan: 7 Ogos 2022/Diterima: 16 November 2022

 

Abstract

Inhomogeneous cluster point processes have been considered for modeling the distribution of earthquake epicenters with the spatial trend and clustering patterns. In particular, the spatial trend is assessed by the intensity model involving geological variables. However, for intensity with a log-linear form, it may be too restrictive and not appropriate for earthquake distribution. In this study, we consider the Cauchy cluster process with the log-additive intensity model to analyze the distribution of major earthquake occurrences in Sumatra, Indonesia. The estimation procedure follows the standard two-step estimation technique, where the first step adapts the method for the Generalized Additive Models (GAMs) using penalized iteratively reweighted least squares (PIRLS) algorithm, and the second step employs the second-order composite likelihood. For the earthquake analysis in Sumatra, the log-additive intensity shows more flexibility to determine the contribution of each geological factor, especially to capture the effect of the nearest distance to the fault which is far from log-linear. In addition, compared to the log-linear model, the Cauchy cluster process with a log-additive intensity model performs better with a smaller Akaike Information Criterion’s (AIC) value and a sharper envelope K-function. The estimated number of mainshocks is around 114 with aftershocks spread by 14 km around the mainshocks. We detect three hotspots for the major earthquake in Sumatra: the northern part (Aceh and North Sumatra), the western part (Mentawai, Nias, and Simeulue), and Bengkulu.

 

Keywords: Disaster risk reduction; earthquake modeling; generalized additive models; spatial point process; subduction

 

Abstrak

Proses titik kelompok tidak homogen telah dipertimbangkan untuk memodelkan taburan pusat gempa bumi dengan arah aliran ruang dan corak kelompok. Khususnya, trend ruang dinilai oleh model keamatan yang melibatkan pemboleh ubah geologi. Walau bagaimanapun, untuk keamatan dengan bentuk log-linear, ia mungkin terlalu terkawal dan tidak sesuai untuk taburan gempa bumi. Dalam kajian ini, kami mempertimbangkan proses kelompok Cauchy dengan model keamatan log-tambahan untuk menganalisis taburan kejadian gempa bumi besar di Sumatera, Indonesia. Prosedur anggaran mengikut teknik anggaran dua langkah piawai dengan langkah pertama menyesuaikan kaedah untuk Model Tambahan Am (GAM) menggunakan algoritma kuasa dua terkecil ditimbang semula secara berulang (PIRLS) berhukum dan langkah kedua menggunakan kemungkinan komposit tertib kedua. Bagi analisis gempa bumi di Sumatera, keamatan log-tambahan menunjukkan lebih kefleksibelan untuk menentukan sumbangan setiap faktor geologi, terutamanya untuk menangkap kesan jarak terdekat dengan sesar yang jauh daripada log-linear. Di samping itu, berbanding model log-linear, proses kelompok Cauchy dengan model keamatan log-tambahan berprestasi lebih baik dengan nilai Kriteria Maklumat Akaike (AIC) yang lebih kecil dan fungsi K sampul yang lebih tajam. Anggaran bilangan gegaran utama adalah sekitar 114 dengan gegaran susulan tersebar sejauh 14 km di sekitar gegaran utama. Kami mengesan tiga titik panas untuk gempa bumi besar di Sumatera: bahagian utara (Aceh dan Sumatera Utara), bahagian barat (Mentawai, Nias dan Simeulue) dan Bengkulu.

 

Kata kunci: Model tambahan am; pemodelan gempa bumi; pengurangan risiko bencana; proses titik ruang; subduksi

 

RUJUKAN

Anwar, S., Yaseen, M. & Mahmood, S.A. 2023. Higher order Gibbs point process modeling of 2005-Kashmir earthquakes. Modeling Earth Systems and Environment 9: 1335-1347.

Baddeley, A., Rubak, E. & Turner, R. 2015. Spatial Point Patterns: Methodology and Applications with R. Boca Raton: CRC Press.

BMKG. 2019. Katalog Gempabumi Signifikan dan Merusak 1821-2018. T. Prasetya & Daryono. Pusat Gempabumi dan Tsunami Kedeputian Bidang Geofisika Badan Meteorologi Klimatologi dan Geofisika: Jakarta.

Choiruddin, A., Aisah, Trisnisa, F. & Iriawan, N. 2021. Quantifying the effect of geological factors on distribution of earthquake occurrences by inhomogeneous Cox processes. Pure and Applied Geophysics 178(5): 1579-1592.

Choiruddin, A., Susanto, T.Y., Husain, A. & Kartikasari, Y.M. 2023. kppmenet: Combining the kppm and elastic net regularization for inhomogeneous Cox point process with correlated covariates. Under revison.

Choiruddin, A., Susanto, T.Y. & Metrikasari, R. 2021. Two-step estimation for modeling the earthquake occurrences in Sumatra by Neyman-Scott Cox point processes. In Communications in Computer and Information Science, edited by Mohamed, A., Yap, B.W., Zain, J.M., Berry, M.W. Singapore: Springer. 1489: 146-159. https://doi.org/10.1007/978-981-16-7334-4_11

D’Angelo, N., Siino, M., D’Alessandro, A. & Adelfio, G. 2022. Local spatial log-Gaussian Cox processes for seismic data. AStA Advances in Statistical Analysis 106: 633-671.

Geng, J., Shi, W. & Hu, G. 2021. Bayesian nonparametric nonhomogeneous Poisson process with applications to USGS earthquake data. Spatial Statistics 41: 100495.

Ghorbani, M. 2013. Cauchy cluster process. Metrika 76(5): 697-706.

Husain, A. & Choiruddin, A. 2021. Poisson and Logistic regressions for inhomogeneous multivariate point processes: A case study in the Barro Colorado Island plot. In Soft Computing in Data Science. SCDS 2021. Communications in Computer and Information Science, vol 1489, edited by Mohamed, A., Yap, B.W., Zain, J.M. & Berry, M.W. Singapore:  Springer. https://doi.org/10.1007/978-981-16-7334-4_22

Ibrahim. 2019. BMKG Soft Launching Uji Coba Sistem Peringatan Dini Gempa. https://www.bmkg.go.id/press-release/?p=bmkg-soft-launching-uji-coba-sistem-peringatan-dini-gempa&tag=press-release&lang=ID.

Iftimi, A., Cronie, O. & Montes, F. 2019. Second-order analysis of marked inhomogeneous spatiotemporal point processes: Applications to earthquake data. Scandinavian Journal of Statistics 46(3): 661-685.

Jalilian, A. 2017. Modelling and classification of species abundance: A case study in the Barro Colorado Island plot. Journal of Applied Statistics 44(13): 2401-2409.

Møller, J. & Waagepetersen, R.P. 2004. Statistical Inference and Simulation for Spatial Point Processes. Boca Raton: CRC Press.

Nasional, P.S.G. 2017. Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017. Pusat Litbang Perumahan dan Pemukiman, Kementerian Pekerjaan Umum dan Perumahan Rakyat (National Center for Earthquake Studies. Indonesian Seismic Sources and Seismic Hazard Maps 2017. Center for Research.

Ogata, Y. 1988. Statistical models for earthquake occurrences and residual analysis for point processes. Journal of the American Statistical Association 83(401): 9-27.

Ogata, Y. 2006. Monitoring of anomaly in the aftershock sequence of the 2005 earthquake of M7. 0 off coast of the western Fukuoka, Japan, by the ETAS model. Geophysical Research Letters 33(1).

Pedersen, E.J., Miller, D.L., Simpson, G.L. & Ross, N. 2018. Hierarchical generalized additive models: An introduction with mgcv. PeerJ 7:e6876.

Pratiwi, H., Haryanto, W., Subanti, S., Mangku, I.W. & Ferawati, K. 2021. A self-exciting point process with cyclic component, trend component, triggering function, and response function. AIP Conference Proceedings. 2329: 060033.

Pratiwi, H., Rini, L.S. & Mangku, I.W. 2018. Marked point process for modelling seismic activity (case study in Sumatra and Java). Journal of Physics: Conference Series 1022(1): 12004.

Siino, M., Adelfio, G., Mateu, J., Chiodi, M. & D’Alessandro, A. 2017. Spatial pattern analysis using hybrid models: An application to the Hellenic seismicity. Stochastic Environmental Research and Risk Assessment 31(7): 1633-1648.

Sosilawati, Handayani, A., Wahyudi, A.R., Mahendra, Z.A., Massudi, W., Febrianto, S. & Suhendri, N.A. 2017. Sinkronisasi Program dan Pembiayaan Pembangunan Jangka Pendek 2018-2020. Keterpaduan Pengembangan Kawasan dengan Infrastruktur PUPR Pulau Jawa, Volume 1. Pusat Pemrograman dan Evaluasi Keterpaduan Infrastruktur Pupr, Badan Pengembangan Infrastruktur Wilayah, Kementerian Pekerjaan Umum dan Perumahan Rakyat.

Trisnisa, F., Metrikasari, R., Rabbanie, R., Sakdiyah, K. & Choiruddin, A. 2019. Model inhomogeneous spatial Cox processes untuk pemetaan risiko gempabumi di pulau Jawa. Inferensi 2(2): 107-111.

Triyono, R. 2015. Ancaman gempabumi di Sumatera tidak hanya bersumber dari Mentawai megathrust. Geofisika Klas I Padang Panjang.

Türkyilmaz, K., van Lieshout, M.N.M. & Stein, A. 2013. Comparing the Hawkes and trigger process models for aftershock sequences following the 2005 Kashmir earthquake. Mathematical Geosciences 45(2): 149-164.

U.S. Geological Survey (USGS). Search Earthquake Catalog. https://earthquake.usgs.gov/earthquakes/search/.

Wood, S.N. 2017. Generalized Additive Models: An Introduction with R. (2nd ed). Boca Raton: CRC Press.

Youngman, B.D. & Economou, T. 2017. Generalised additive point process models for natural hazard occurrence. Environmetrics 28(4): e2444.

 

*Pengarang untuk surat-menyurat; email: choiruddin@its.ac.id

   

sebelumnya