Sains Malaysiana 52(3)(2023): 795-803
http://doi.org/10.17576/jsm-2023-5203-09
Inhibitory Effects of Nipa Palm
Vinegar on the Carbohydrate Hydrolysing Enzymes
(Kesan
Perencatan Cuka Nipah pada Enzim Hidrolisis Karbohidrat)
FARJANA YASMIN1,4, SWAMINATHAN MEYYAMMAI2, KHAIRUL
NIZA ABD RAZAK2, NOZLENA ABDUL SAMAD1, TRI WIDYAWATI3 & NOR ADLIN YUSOFF1,*
1Advanced Medical and Dental
Institute, Universiti Sains Malaysia, 13200 Penang, Malaysia
2School of Pharmaceutical
Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
3Pharmacology and Therapeutic Department,
Medical Faculty, University of Sumatera Utara, Medan 20155, Indonesia
4Centre for Genome
Engineering, Institute for Basic Science, 55, Expo-ro, Yuseong-gu, Daejeon
34126, Korea
Diserahkan: 6 April 2022/Diterima: 11 Januari 2023
Abstract
Nipa palm vinegar has been traditionally used to
manage blood glucose levels by diabetic patients in Southeast Asia. This
study was designed to evaluate the efficacy of nipa palm vinegar in inhibiting
the activity of carbohydrate hydrolyzing enzymes, α-glucosidase, and
α-amylase. In vitro spectrophotometric assays were used to
evaluate the inhibitory activity of nipa palm activity against
α-glucosidase and α-amylase. To confirm the in vitro findings,
an oral starch tolerance test in the normoglycemic Sprague Dawley rat was
conducted. Acarbose was used
as the positive control for both tests. Nipa palm vinegar at a concentration
ranging from 4000 to 62.5 mg/mL inhibited the
activity of α-glucosidase and α-amylase in a
concentration-dependent manner with the respective IC50 values of 144.50 ± 1.1 mg/mL and 90.30 ± 1.7 mg/mL. It
also exerted uncompetitive inhibition against α-glucosidase and
competitive inhibition towards α-amylase. In vivo oral starch tolerance test showed a significant (p < 0.05)
postprandial glucose-lowering effect of nipa palm vinegar at the doses of 2
mL/kg and 1 mL/kg body weight as compared to the control. In a conclusion, this
study demonstrated that nipa palm vinegar suppressed the rise in postprandial
glucose levels partly by inhibiting the activity of digestive enzymes.
Keywords:
α-amylase; α-glucosidase; Diabetes mellitus; nipa palm vinegar; Nypa fruticans Wurmb.
Abstrak
Cuka
nipah telah digunakan secara tradisi dalam mengawal aras glukosa darah oleh
pesakit diabetes di Asia Tenggara. Kajian ini menilai keberkesanan cuka nipah
dalam merencat aktiviti enzim-enzim hidrolisis karbohidrat iaitu α-glukosidase
dan α-amilase. Ujian spektrofotometrik secara in vitro telah
digunakan untuk menguji potensi aktiviti perencatan cuka nipah terhadap
α-glukosidase dan α-amilase. Bagi mengesahkan penemuan ujian in
vitro, ujian toleransi kanji oral secara in vivo pada tikus
normoglisemik dijalankan. Keputusan menunjukkan cuka nipah merencat aktiviti
α-glukosidase dan α-amilase secara kebergantungan kepekatan dengan
nilai IC50 adalah masing-masing adalah 144.50 ± 1.1 mg/mL dan 90.30 ± 1.7 mg/mL. Cuka nipah juga menunjukkan
perencatan tidak kompetitif terhadap α-glukosidase dan
perencatan kompetitif terhadap α-amilase. Ujian toleransi kanji oral secara in vivo menunjukkan cuka nipah pada dos 2 mL/kg dan 1 mL/kg berat badan mampu
menurunkan aras glukosa postprandial secara signifikan dibandingkan dengan
kawalan (p<0.05). Kesimpulannya, kajian ini membuktikan cuka nipah menghalang
kenaikan aras glukosa darah postprandial, sebahagiannya dengan merencat
aktiviti enzim pencernaan.
Kata
kunci: α-amilase;
α-glukosidase; cuka nipah; kencing manis; Nypa fruticans Wurmb.
RUJUKAN
Assefa, S.T., Yang, E-Y., Chae, S-Y., Song, M.,
Lee, J., Cho, M-C. & Jang, S. 2019. Alpha glucosidase inhibitory activities
of plants with focus on common vegetables. Plants 9: 2-19.
AquaPhoenix Scientific, Inc. (APS) 2015. Safety
Data Sheet Vinegar. S25623. Oct. 2014 (Revised May 2015).
Beh, B.K., Mohamad, N.E.,
Yeap, S.K., Ky, H., Boo, S.K., Chua, J.Y.H., Tan, S.W., Ho, W.Y., Sharifuddin,
S.A., Long, K. & Alitheen, N.B. 2017. Anti-obesity and anti-inflammatory
effects of synthetic acetic acid vinegar and nipa vinegar on
high-fat-diet-induced obese mice. Scientific Reports 7: 6664.
Bumrungpert, A., Pavadhgul, P., Chongsuwat,
R. & Komindr, S. 2020. Nutraceutical improves glycemic control, insulin
sensitivity, and oxidative stress in hyperglycemic subjects: A randomized,
double-blind, placebo-controlled clinical trial. Natural Product Communications 15: 1-11.
Chandran, A., Abdullah, M.N. & Abdul,
F. 2020. National Diabetes Registry Report 2013-2019. Putrajaya:
Ministry of Health Malaysia.
Chang, J., Han, S.E.,
Paik, S.S. & Kim, Y.J. 2020. Corrosive esophageal injury due to a
commercial vinegar beverage in an adolescent. Clinical Endoscopy 53: 366-369.
Chatatikun, M. & Kwanhian, W. 2020.
Phenolic profile of nipa palm vinegar and evaluation of its antilipidemic
activities. Evidence-Based Complementary and Alternative Medicine 2020:
6769726.
Chen, Y., Li, Q., Han, Y., Ji, H., Gu, M.,
Bian, R., Ding, W., Cheng, J. & Mu, Y. 2020. Vildagliptin versus
α-glucosidase inhibitor as an add-on to metformin for type 2 diabetes:
Subgroup analysis of the China prospective diabetes study. Diabetes Res. 11:
247-257.
Davies, M.J., Aroda, V.R., Collins, B.S.,
Gabbay, R.A., Green, J., Maruthur, N.M., Rosas, S.E., Del Prato, S., Mathieu, C., Mingrone, G., Rossing,
P., Tankova, T., Tsapas, A. & Buse, J.B. 2022. Management of hyperglycemia
in type 2 diabetes, 2022: A consensus report by
the American Diabetes Association (ADA) and the European Association for the
Study of Diabetes (EASD). Diabetes Care 45(11): 2753-2786.
Dirir, A.M., Daou, M., Yousef, A.F. &
Yousef, LF. 2022. A review of alpha-glucosidase inhibitors from plants as
potential candidates for the treatment of type-2 diabetes. Phytochem. Rev. 21:
1049-1079.
Ganesan, K. & Xu, B. 2019.
Anti-diabetic effects and mechanisms of dietary polysaccharides. Molecules 24: 2556.
Hershon, K.S., Hirsch,
B.R. & Odugbesan, O. 2019. Importance of postprandial glucose in relation
to A1C and cardiovascular disease. Clinical Diabetes 37(3): 250-259.
Hiyoshi, T., Fujiwara, M. & Yao, Z. 2019.
Postprandial hyperglycemia and postprandial hypertriglyceridemia in type 2
diabetes. Journal of Biomedical Research 33: 1-16.
Johnston,
C.S., Steplewska, I., Long, C.A., Harris, L.N. & Ryals, R.H. 2010.
Examination of the antiglycemic properties of vinegar in healthy adults. Annals
of Nutrition and Metabolism 56(1): 74-79.
Laaroussi, H., Ferreira-Santos, P., Genisheva, Z.,
Bakour, M., Ousaaid, D., Teixera, J.A. & Lyoussi, B. 2021. Unravelling the
chemical composition, antioxidant, α-amylase and α-glucosidase
inhibition of Moroccan propolis. Food Bioscience 42: 101160.
Liatis, S., Grammatikou, S., Poulia, K.A.,
Perrea, D., Makrilakis, K., Diakoumopoulou, E. & Katsilambros, N. 2010.
Vinegar reduces postprandial hyperglycaemia in patients with type II diabetes
when added to a high, but not to a low, glycaemic index meal. European
Journal of Clinical Nutrition 64: 727-732.
Marunaka, Y. 2018. The proposal of
molecular mechanisms of weak organic acids intake-induced improvement of
insulin resistance in diabetes mellitus via elevation of interstitial fluid pH. International Journal of Molecular Sciences 19(10): 3244-3268.
Mohamad, N.E.,
Yeap, S.K., Lim, K.L., Yusof, H.M., Beh, B.K., Tan, S.W., Ho, W.Y.,
Sharifuddin, S.A., Jamaluddin, A., Long, K. & Nik-Abd, N.M.A. 2015.
Antioxidant effects of pineapple vinegar in reversing of paracetamol-induced
liver damage in mice. Chinese Medicine 10: 1-10.
Noh, Y.H., Lee, D., Bin-Lee, Y.W. &
Pyo, Y.H. 2020. In vitro inhibitory effects of organic acids
identified in commercial vinegars on α-amylase and α-glucosidase. Preventive
Nutrition and Food Science 25: 319.
Östman,
E., Granfeldt, Y., Persson, L. & Björck, I. 2005. Vinegar supplementation
lowers glucose and insulin responses and increases satiety after a bread meal
in healthy subjects. European Journal of Clinical Nutrition 59(9):
983-988.
Ouertani,
A., Neifar, M., Ouertani, R., Masmoudi, A.S. & Cherif, A. 2019.
Effectiveness of enzyme inhibitors in biomedicine and pharmacotherapy. Advances
in Tissue Engineering & Regenerative Medicine: Open Access 5(3):
85-90.
Perumpuli,
P.A.B.N. & Dilrukshi,
D.M.N. 2022. Vinegar: A functional ingredient for human health. International
Food Research Journal 29(5): 959-974.
Shishehbor, F., Mansoori, A. & Shirani,
F. 2017. Vinegar consumption can attenuate postprandial glucose and insulin
responses: A systematic review and meta-analysis of clinical trials. Diabetes
Research and Clinical Practice 127: 1-9.
Tang, H., Zhang,
J. & Song, Y. 2017. Adverse effects
and safety of SGLT2 inhibitor use among patients with Type 2 diabetes: Findings
from RCT evidence. North
American Journal of Medicine and Science 10(2): 78-82.
Tangkiatkumjai, M.,
Boardman, H. & Walker, D.M. 2020. Potential factors that influence usage of
complementary and alternative medicine worldwide: A systematic review. BMC
Complementary Medicine and Therapies 20: 363-378.
UBC
Animal Care Guidelines. 2014. Collection of Small Amounts of Blood from Tail
Tip Microsampling in Rats (SOP: ACC‐2014‐Tech13).
http://
https://animalcare.ubc.ca/animal-care-committee/sops-policies-and-guidelines
Wickramaratne, M.N.,
Punchihewa, J.C. & Wickramaratne, D.B. 2016. In-vitro alpha-amylase
inhibitory activity of the leaf extracts of Adenanthera pavonina. BMC
Complementary and Alternative Medicine 16(1): 466-470.
Wihansah, R.S., Arief, I.I. & Batubara,
I. 2018. Anti-diabetic potency and characteristics of probiotic goat-milk
yogurt supplemented with roselle extract during cold storage. Tropical
Journal of Animal Science 41: 191-199.
*Pengarang
untuk surat-menyurat; email: noradlinyusoff@usm.my
|