Sains Malaysiana 52(3)(2023): 877-885

http://doi.org/10.17576/jsm-2023-5203-15

 

Nanoemulsion of Turmeric in VCO Inhibit the Progressivity of Lung Fibrosis due to Cigarette Exposure

(Nanoemulsi Kunyit dalam VCO Merencat Perkembangan Fibrosis Paru-Paru Akibat Pendedahan Rokok)

 

NUR AISAH IBRAHIMIYAH1*, GWENNY ICHSAN PRABOWO2, LINA LUKITASARI2 & RADITYA WEKA NUGRAHENI3

 

1Master Program of Basic Medical Science, Faculty of Medicine, Airlangga University, Surabaya, East Java, Indonesia

2Department of Medical Physiology and Biochemistry, Faculty of Medicine, Airlangga University, Surabaya, East Java, Indonesia

3Pharmacy Study Program, Faculty of Health Sciences, Muhammadiyah Malang UniversityMalang, East Java, Indonesia

 

Diserahkan: 23 Ogos 2022/Diterima: 3 Februari2023

 

Abstract

Pulmonary fibrosis is a form of lung damage caused by chronic inflammation. One of the causes is cigarette smoke exposure, which can damage cilia and epithelial cells, that is able to  stimulate oxidative stress as well. The inflammatory response by inflammatory cells triggers release of inflammatory mediators, for example, TNF-α. Increased levels of TNF-α indicate a high inflammatory process and a high risk of pulmonary fibrosis. Nanoemulsion of turmeric extract in VCO contains curcumin, which can suppress the secretion and expression of TNF-α through several pathways. This study is aimed to analyze the inhibitory effect of turmeric extract nanoemulsion in VCO on pulmonary fibrosis in an inflammatory way. In this study, 40 white rats were used and divided into five groups;  K0 was negative controls group, K1 was exposed to smoke from two cigarettes/day for 42 days, K2 received 0.3 mL dose of nanoemulsion + cigarette exposure, K3 received 0.6 mL dose of nanoemulsion + cigarette exposure and K4 received dexamethasone (0.2 mg/kgBW) + cigarette exposure. Furthermore, plasma TNF-α levels taken from cardiac blood and histopathological preparations (HE, MA) were made from the right lung. One-way ANOVA test was used to analyze plasma TNF-α levels, the Kruskal-Wallis test was used to analyze fibrosis degree scoring based on Aschroft Modification Scale and the correlation test was analyzed by Spearman test. The results showed that 0.3 mL of turmeric extract nanoemulsion in VCO had the best inhibitory effect on progressivity tissue damage and pulmonary fibrosis.

 

Keywords: Chronic respiratory disease; cigarette; curcumin; nanoemulsion

 

Abstrak

Fibrosis paru adalah satu bentuk kerosakan paru-paru yang disebabkan oleh keradangan kronik. Salah satu puncanya ialah pendedahan kepada asap rokok. Keradangan akibat asap rokok boleh merosakkan silia dan sel epitelium dan ia juga boleh merangsang tekanan oksidatif. Tindak balas keradangan oleh sel radang mencetuskan pembebasan mediator keradangan, contohnya, TNF-α. Peningkatan tahap TNF-α menunjukkan proses keradangan yang tinggi dan risiko tinggi fibrosis paru. Nanoemulsi ekstrak kunyit dalam VCO mengandungi kurkumin yang dapat menyekat rembesan dan pengekspresan TNF-α melalui beberapa laluan. Kajian ini bertujuan untuk menganalisis potensi perencatan nanoemulsi ekstrak kunyit dalam VCO pada fibrosis paru melalui keradangan. Dalam kajian ini, 40 ekor tikus putih telah digunakan dan dibahagikan kepada lima kumpulan dengan K0 adalah kumpulan kawalan negatif, K1 didedahkan kepada asap daripada dua batang rokok/hari selama 42 hari, K2 menerima 0.3 mL dos nanoemulsi +  asap rokok, K3 menerima 0.6 mL dos nanoemulsi + asap rokok dan K4 menerima deksametason (0.2 mg/kgBB) + asap rokok. Tambahan pula, kadar TNF-α plasma diambil daripada darah jantung dan persediaan histopatologi (HE, MA) dibuat daripada paru-paru kanan. Ujian ANOVA sehala digunakan untuk menganalisis kadar TNF-α plasma, ujian Kruskal-Wallis digunakan untuk menganalisis pemarkahan darjah fibrosis berdasarkan skala pengubahsuaian Aschorft dan ujian korelasi dianalisis dengan ujian Spearman. Keputusan menunjukkan bahawa 0.3 mL nanoemulsi ekstrak kunyit dalam VCO mempunyai kesan perencatan terbaik terhadap kemajuan kerosakan jaringan dan fibrosis paru.

 

Kata kunci: Kurkumin; nanoemulsi; penyakit pernafasan kronik; rokok

 

RUJUKAN

Aggarwal, B.B.,  Prasad, S.,  Reuter, S., Kannappan, R., Yadev, V.R., Park, B., Kim, J.H.,  Gupta, S.C., Phromnoi, K., Sundaram, C., Prasad, S., Chaturvedi, M.M. & Sung, B. 2011. Identification of level anti-inflammatory agents from Ayuverdic medicine for prevention of chronic disease. Curr. Drug Targets 12: 1595-1653.

Aggarwal, B.B., Gupta, S.C. & Sung, B. 2013. Curcumin: An orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. British Journal of Pharmacology 169: 1672-1692.

Bae, M., Park, Y.K. & Lee, J.Y. 2018. Food components with antifibrotic activity and implication in the prevention of liver disease. Journal of Nutritional Biochemistry 55: 1-11.

Bagchi, A. 2012. Extraction of curcumin. Journal of Enviromental Science Toxicology and Food Technology 1(3): 1-16.

Balasubramanyam, K., Varier, R.A., Altaf, M., Swaminathan, V., Siddappa, N.B., Ranga, U. & Kundu, T.K. 2004. Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J. Biol. Chem. 279(49): 51163-51711.

Basyigit, I., Sahin, M., Sahin, D., Yildiz, F., Boyaci, H., Sirvanci, S. & Ercan, F. 2010. Anti-inflammatory effect of montelukast on smoke-induced lung injury in rats. Multidisciplinary Respiratory Medicine 5: 1-9.

Cas, D.M. & Ghidoni, R. 2019. Dietary curcumin: Correlation between bioavailability and health potential. Nutrients 9: 1-14.

Cho, J.W., Lee, K.S. & Kim, C.W. 2007. Curcumin attenuates the expression of IL-1β, IL-6, and TNF-α, as well as cyclin E in TNF-α, treated HaCat cells; NF-kB and MAPKs as potential upstream targets. International Journal of Molecular Medicine 19(3): 469-474.

Damin, S.H., Alam, N. & Sarro, D. 2017. Characteristics of virgin coconut oil (VCO) harvested at various altitudes where it grows. Journal of Argotekbis 5(04): 431-440.

Desdiani, Iris Rengganis, Samsuridjal Djauzi, Agus Setiyono, Mohammad Sadikin, Sri Widia A Jusman, Nurjati Siregar, Suradi & Putri C. Eyanoer. 2020. Green tea extract reduces the area of ​​rat lung fibrosis. Indonesian Pathology Magazine 29(1): 15-24.

Dorey, A., Scheerlinck, P., Nguyen, H. & Albertson, B.G.T. 2020. Acute and chronic carbon monoxide toxicity from tobacco smoking. Military Medicine 185(1): 61-67.

Eghbaliferiz, S. & Iranshahi, M. 2016. Prooxidant activity of polyphenols, flavonoids, anthocyanins, and carotenoids: An updated review of mechanism and catalyzing metals. Phytotherapy Research30(9): 1379-1391.

Ercan, E., Ilbamis, M.S. & Tasci, U. 2021. Effect of smoking on acute hypobaric hypoxia tolerance. Hamidiye Med J. 2(1): 37-42.

Flora, G., Gupta, D. & Tiwari, A. 2013. Nanocurcumin: A promising therapeutic advancement over native curcumin. Crit. Rev. The Drug Carrier Syst. 30(4): 331-336.

Gawda, E.W., Wrzos, P.C., Zarobkiewicz, M.K., Chlapek, K. & Jedrych, B.J. 2020. Lung histological alterations in rats exposed to cigarette smoke and electronic cigarette vapor. Experimental and Therapeutic Medicine 19: 2826-2832.

Gupta, S.C., Prasad, S., Kim, J.H., Patchva, S., Webb, L.J., Priyadarsini, I.K. & Aggarwal, B.B. 2011. Multitargeting by curcumin as revealed by molecular interaction studies. Nat. Prod. Rep. 28(12): 1937-1955.

Huang, R., Liu, Y., Xiong, Y., Wu, H., Wang, G., Sun, Z., Chen, J., Yan, X., Pan, Z., Xia, J., Zhang, Z., Wang, J. & Wu, C. 2016. Curcumin protects against liver fibrosis by attenuating infiltration of grh1i monocytes through inhibition of monocyte chemoattractant protein. Discov. Med. 21(118): 447-457.

Hubner, R.H., Gitter, W., El Mokhtari, N.E., Mathiak, M., Both, M. & Bolte, H. 2008. Standardized quantification of pulmonary fibrosis in histological samples. Biotechnique 44: 507-517.

Jacob, A., Wu, R., Zhou, M. & Wang, P. 2007. Mechanism of the anti-inflammatory effect of curcumin: PPAR-γ activation. PPAR Research2007: 89369.

Jain, K.S., Rains, J., Croad, J., Larson B. & Jones, K. 2009. Curcumin supplementation lowers TNF-α, IL-6, IL-8, and MCP-1 secretion in high glucose-treated cultured monocytes and blood levels of TNF-α, IL-6, MCP-1, glucose, and glycosylated hemoglobin in diabetic rats. Antioxidant & Redox Signaling 11(2): 241-249.

Klopfleisch, R. 2013. Multiparametric and semiquantitative scoring systems for the evaluation of mouse model histopathology. BMC Vet. Res. 9(123): 1-15.

Lopez, A.G., Thiago, S.F., Renata, T.N., Manuella, L., Karla, M.P.P., Ari, M.S., Ricardo, M.B., Antonio, J.R.S., Samuel, S.V. & Luis, C.P. 2013. The antioxidant action of propolis on mouse warp exposed to short-term cigarette smoke. Bioorganic and Medicinal Chemistry 21(24): 7570-7577.

Lugg, S.T., Scott, A., Parekh, D., Naidu, B. & Thickett, D.R. 2021. Cigarette smoke exposure and alveolar macrophages: A mechanism for lung disease. Thorax77(1): 94-101.

Maharaj, S., Shimbori, C. & Kolb, M. 2013. Fibrocytes in pulmonary fibrosis: A brief synopsis. Eur. Respir. Rev. 22: 552-557.

Maulidiyah, N. & Amin, M. 2015. Respiratory biomarkers in lung disease. Respiration Journal 1(2): 67-71.

Medzhitov, R. 2010. Inflammation 2010: New adventures of an old flame. Cells 140(6): 771-776.

Napanggala, A. 2015. Chronic obstructive pulmonary disease with pleural effusion and grade I hypertension. Medula Journal 4(2): 1-6.

Peng, Y., Ao, M., Dong, B., Jiang, Y., Yu, L., Chen, Z., Hu, C. & Xu, R. 2021. Anti-inflammatory effects of curcumin in the inflammatory diseases: Status, limitations, and countermeasures. Drug Design, Development and Therapy 15: 4503-4525.

Profita, M., Sala, A., Bonanno, A., Riccobono, L., Ferraro, M., La Grutta, S., Albano, G.D., Montalbano, A.M. & Gjomarkaj, M. 2010. Chronic obstructive pulmonary disease and neutrophile infiltration: Role of cigarette smoke and cyclooxygenase products. Am. J. Physiol. Lung Cell Mol. Physiol. 298: 261-269.

Ramli, N., Rifa'i, Y., Wunas, J. & Yustianus, R.R. 2019. Curcumin content in an extract of some rhizomes from the Zingiberaceae family. Journal of Pharmaceutical and Medicinal Sciences 4(1): 15-19.

Rasool, S.T., Alavala, R.R., Kulandaivelu, U. & Sreeharsa, N. 2020. Non-invasive delivery of nano emulsified sesame oil extract of turmeric attenuates lung inflammation. Pharmaceutics 12(1206): 1-15.

Salawati, L. 2016. The relationship of smoking with the degree of chronic obstructive pulmonary disease. Syiah Kuala Medical Journal 16(3): 165-169.

Sari, T.P., Mann, B., Kumar, R., Singh, R.R.B., Rajan, S., Minaxi, B. & Athira, S. 2015. Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocolloid 43: 540-546.

Sephapour, S., Selamat, J., Manap, M.Y.A., Khatib, A. & Razis, A.F.A. 2018. Comparative analysis of the chemical composition, antioxidant activity, and quantitative characterization of some phenolic compounds in selected herbs and spices in different solvent extraction systems. Molecules 23(402): 1-7.

Sullivan, D.E., Ferris, M., Nguyen, H., Abboud, E. & Brody, A.R. 2009. TNF-a induces tgfb1 expression in lung fibroblasts at the transcriptional level via AP-1 activation. J. Cell Mol. Med. 13(08): 1866-1876.

Supriono, Pratomo, B. & Praja, D.I. 2018. Effect of curcumin on nf-kb levels and degree of liver fibrosis in liver fibrosis rats. Journal of Internal Medicine 5(4): 174-183.

Todd, N.W., Luzina, I.G. & Atamas, S.P. 2012. Cellular and molecular mechanisms of pulmonary fibrosis. Fibrogenesis and Tissue Repair 5(11): 1-24.

Vasconcelos, L.H.C., Silva, M.C.C., Costa, A.C., de Oliveira, G.A., de Souza, I.L.L., Righetti, R.F., Queiroga, F.R., Cardoso, G.A., Silva, A.S., da Silva, P.M., Vieira, G.C., de F.L.C., Tibério, I., Madruga, M.S., de A Cavalcante, F. & da Silva, B.A.  2020. Virgin coconut oil supplementation prevent airway hyperreactivity of guinea pigs with chronic llergic lung inflammation by antioxidant mechanism. Oxidative Medicine and Cellular Longevity 2020: 5148503.

Wua, S.T., Sun, J.C., Lee, K. & Sun, Y. 2010. Docking prediction for tumor necrosis factor- and five herbal inhibitors. Int. J. Eng. Sci. Technol. 2: 4263-4277.

Wulandari, R.D., Hadisaputro, S. & Suhartono. 2013. Various factors related to the incidence of pulmonary function disorders in the workspace (a case study of electroplating home industry workers in Talang sub-district, Tegal district. Indonesian Environmental Health Journal 12(1): 94-98.

Wuyts, W.A., Agostini, C.,  Antoniou, K.M., Bouros, D., Chambers, R.C., Cottin, V., Egan, J.J., Lambrecht, B.N., Lories, R., Parfrey, H., Prasse, A., Robalo-Cordeiro, C., Verbeken, E., Verschakelen, J.A., Wells, A.U. & Verleden, G.M. 2013. The pathogenesis of pulmonary fibrosis: A moving target. European Respiratory Journal 41(5): 1207-1218.

Yordi, E.G., Perez, E.M., Matos, M.J. & Villares, E.U. 2012. Antioxidant and prooxidant effects of polyphenolic compounds and structure-activity relationship evidence. Nutrition, Well-Being, and Health. https://cdn.intechopen.com/pdfs/29974.pdf

Yu, H. & Huang, Q. 2012. Improving the oral bioavailability of curcumin using novel organelle-based nanoemulsions. J. Agric. Food Chem. 30(60): 5373-5379.

Yudhawati, R. & Prasetyo, Y.D. 2018. Immunopathogenesis of chronic obstructive pulmonary disease. Journal of Respiration 4(1): 19-25.

Zeldin, C.D., Lenane, C.W., Chulada, P., Bradbury, A., Scarborough, P.E., Roggli, V., Langenbach, R. & Schwartz, D.A. 2001. Airway inflammation and responsiveness in prostaglandin H synthase-deficient mice exposed to bacterial lipopolysaccharide. American Journal of Respiratory Cell and Molecular Biology 25: 457-464.

Zhang, D., Huang, C., Yang, C., Liu, R.J., Wang, J., Niu, J. & Bromme, D. 2011. Antifibrotic effects of curcumin are associated with overexpression of cathepsins and bleomycin-treated mice and human fibroblasts. Respiratory Research 12(1): 1-12.

 

*Pengarang untuk surat-menyurat; email: nuraisahibrahim28@gmail.com

   

sebelumnya