Sains Malaysiana
52(5)(2023):
1359-1370
http://doi.org/10.17576/jsm-2023-5205-03
Rekod Jangka Panjang Kepekatan Metana di
Malaysia
(Long Term Record of Methane in Malaysia)
MOHD
RASHDAN TOPA1,2, MOHD TALIB LATIF1,*, MURNIRA OTHMAN3,
MAGGIE OOI CHEL GEE4, NORFAZRIN MOHD HANIF1, MOHD
SHAHRUL MOHD NADZIR1, HARIS HAFIZAL ABD HAMID1, ANIS ASMA
AHMAD MOHTAR1,5 & LIEW JUNENG1
1Jabatan Sains Bumi dan Alam Sekitar, Fakulti Sains dan Teknologi,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Jabatan Alam Sekitar Malaysia, Kementerian Alam Sekitar dan Air, 62574
Putrajaya, Wilayah Persekutuan, Malaysia
3Institut Alam Sekitar dan Pembangunan (LESTARI), Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
4Pusat Sistem Perubahan Iklim Tropika (IKLIM), Institut Perubahan Iklim,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
5Jabatan Meteorologi Malaysia, Kementerian Sumber Asli, Alam Sekitar dan
Perubahan Iklim, Jalan Sultan, 46667 Petaling Jaya, Selangor Darul Ehsan,
Malaysia
Diserahkan: 17 Disember 2022/Diterima: 17
April 2023
Abstrak
Gas metana (CH4)
adalah gas rumah hijau yang menyebabkan perubahan iklim dan pemanasan dunia.
Kajian CH4 dijalankan untuk melihat tren pelepasan CH4 di
Malaysia dalam satu jangka masa yang panjang (10 tahun) dari tahun 2000 hingga
2009 dan menilai hubungan CH4 dengan ozon permukaan (O3).
Data CH4 daripada 19 stesen pemantauan kualiti udara automatik
berterusan Jabatan Alam Sekitar (JAS) di Malaysia telah dianalisis menggunakan
analisis statistik dan korelasi Pearson. Hasil kajian mendapati nilai bacaan
kepekatan purata bulanan CH4 tertinggi dicatatkan di stesen Larkin,
Johor Bahru iaitu 2.61±0.54 ppm. Nilai purata kepekatan CH4 berdasarkan data yang direkodkan di semua stesen di Malaysia adalah 2.00 ppm.
Taburan kepekatan CH4 yang lebih tinggi didapati tertumpu di kawasan
bandar dan kawasan perindustrian di Selangor, Melaka dan Johor. Analisis
korelasi bagi menentukan hubungan CH4 dengan bahan pencemar O3 mendapati 15 stesen menunjukkan korelasi positif yang sangat kecil dan lemah (r < 0.20 dan 0.20 < r < 0.40) manakala empat stesen lagi
menunjukkan korelasi negatif. Hubungan antara CH4 dengan bahan
pencemar O3 bagi kesemua stesen adalah tidak signifikan (r < 0.5, p > 0.05). Stesen Shah
Alam didapati menunjukkan korelasi CH4 paling tinggi dengan O3 berbanding stesen lain. Pengetahuan asas berkenaan CH4 dalam udara ambien Malaysia yang ditunjukkan dalam kajian ini boleh digunakan
untuk menilai potensi impak CH4 terhadap alam sekitar, perubahan
iklim dan kesihatan manusia.
Kata kunci: Gas rumah hijau; iklim tropika; metana; ozon
permukaan
Abstract
Methane (CH4) is a greenhouse
gas (GHG) that causes climate change and global warming. This study was
conducted to look at the tren of CH4 emission in Malaysia over a
long period of time (10 years) from 2000 to 2009 and evaluate the relationship
of CH4 with surface ozone (O3). CH4 data from
19 continuous automatic air quality monitoring stations from the Department of
Environment (DOE) in Malaysia were analyzed using statistical analysis and
Pearson correlation. The results of the study found that the highest average monthly
CH4 concentration reading was recorded at Larkin station, Johor
Bahru which is 2.61 ± 0.54 ppm. The average concentration of CH4 based on the data recorded at all stations in Malaysia is 2.00 ppm. The
distribution of CH4 concentrations was found to be concentrated in
urban and industrial areas in Selangor, Melaka and Johor. Correlation analysis
to determine the relationship of CH4 with O3 pollutants
found that 15 stations showed very small and weak positive correlations (r < 0.20 and 0.20 < r < 0.40)
while another four stations showed negative correlations. The relationship
between CH4 and O3 pollutants for all stations was not
significant (r < 0.5, p > 0.05). Shah Alam station was
found to show the highest correlation of CH4 with O3 compared to other stations. The fundamental knowledge of CH4 in
Malaysian ambient air provided by this study can be utilised to assess its
possible effects on the environment, climate change and human health.
Keywords: Greenhouse
gases; methane; surface ozone; tropical climate
RUJUKAN
Adetona, A.B. & Layzell,
D.B. 2023. Diverting residual biomass to energy use: Quantifying the global
warming potential of biogenic CO2 (GWPbCO2). GCB Bioenergy 15(5): 697-709. https://doi.org/10.1111/gcbb.13048
Amin, M.A., Shukor, H., Yin,
L.S., Kasim, F.H., Shoparwe, N.F., Makhtar, M.M.Z. & Yaser, A.Z. 2022.
Methane biogas production in Malaysia: Challenge and future plan. International Journal of Chemical
Engineering 2022: Article ID. 2278211.
Banan, N., Latif, M.T.,
Juneng, L. & Ahamad, F. 2013. Characteristics of surface ozone
concentrations at stations with different backgrounds in the Malaysian
Peninsula. Aerosol and Air Quality
Research 13(3): 1090-1106.
Boakye‐Agyei, K. 2011.
Approaching climate adjusted environmental due diligence for multilateral
financial institutions. International
Journal of Climate Change Strategies and Management 3(3): 264-274.
Busman, N.A., Melling, L.,
Goh, K.J., Imran, Y., Sangok, F.E. & Watanabe, A. 2023. Soil Co2 and Ch4 fluxes from different forest types in tropical peat swamp
forest. Science of The Total Environment 858: 159973.
Chaddy, A., Melling, L.,
Ishikura, K., Goh, K.J., Toma, Y. & Hatano, R. 2021. Effects of long-term
nitrogen fertilization and ground water level changes on soil CO2 fluxes from oil palm plantation on tropical peatland. Atmosphere 12(10): 1340.
Cheng, C.H. & Redfern,
S.A.T. 2022. Impact of interannual and multidecadal trens on methane-climate
feedbacks and sensitivity. Nature
Communications 13(1): 3592.
Chin, M.J., Poh, P.E., Tey,
B.T., Chan, E.S. & Chin, K.L. 2013. Biogas from palm oil mill effluent
(POME): Opportunities and challenges from Malaysia's perspective. Renewable and Sustainable Energy Reviews 26: 717-726.
Dlugokencky, E.J., Nisbet,
E.G., Fisher, R. & Lowry, D.J. 2011. Global atmospheric methane: Budget,
changes and dangers. Philosophical Transactions of the Royal Society A
Mathematical Physical and Engineering Sciences 369(1943): 2058-2072.
Halady, I.R. & Rao, P.H.
2010. Does awareness to climate change lead to behavioral change? International Journal of Climate Change
Strategies and Management 2(1): 6-22.
Hopkins, F.M., Ehleringer,
J.R., Bush, S.E., Duren, R.M., Miller, C.E., Lai, C.T., Hsu, Y.K., Carranza, V.
& Randerson, J.T. 2016. Mitigation of methane emissions in cities: How new
measurements and partnerships can contribute to emissions reduction strategies. Earth's Future 4(9): 408-425.
KASA 2020. Malaysia Third
Biennial Update Report to the UNFCCC. Putrajaya: Ministry of Environment
and Water Malaysia.
Kirschke,
S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J.G., Dlugokencky, E.J.,
Bergamaschi, P., Bergmann, D., Blake, D.R., Bruhwiler, L., Cameron-Smith,
P., Castaldi, S., Chevallier,
F., Feng, L., Fraser, A., Heimann, M., Hodson, E.L., Houweling, S., Josse, B., Fraser, P.J., Krummel, P.B., Lamarque, J-F., Langenfelds, R.L., Le Quéré, C., Naik, V., O'Doherty, S., Palmer, P.I., Pison, I., Plummer, D., Poulter, B., Prinn, R.G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell, D.T., Simpson, I.J., Spahni, R., Steele, L.P., Strode, S.A., Sudo, K., Szopa, S., van der Werf, G.R., Voulgarakis, A., van Weele, M., Weiss, R.F., Williams,
J.E. & Zeng,
G. 2013. Three decades of global methane sources and sinks. Nature
Geoscience 6(10): 813-823.
Lam, M.K. & Lee, K.T.
2011. Renewable and sustainable bioenergies production from palm oil mill
effluent (POME): Win-win strategies toward better environmental protection. Biotechnology Advances 29(1): 124-141.
Lan, X., Thoning, K.W. &
Dlugokencky, E.J. 2022. Trens in
Globally-Averaged CH4, N2O, and SF6 Determined
from NOAA Global Monitoring Laboratory Measurements. Version 2022-12.
https://doi.org/10.15138/P8XG-AA10
Latif, M.T., Dominick, D.,
Ahamad, F., Khan, M.F., Juneng, L., Hamzah, F.M. & Nadzir, M.S.M. 2014.
Long term assessment of air quality from a background station on the Malaysian
Peninsula. Science of The Total
Environment 482-483(1): 336-348.
Lelieveld, J., Crutzen, P.J.
& Brühl, C. 1993. Climate effects of atmospheric methane. Chemosphere 26(1-4): 739-768.
Li, L., Lei, L., Song, H.,
Zeng, Z. & He, Z. 2022. Spatiotemporal geostatistical analysis and global
mapping of CH4 columns from GOSAT observations. Remote Sensing 14(3): 654.
Masarie, K.A. & Tans,
P.P. 1995. Extension and integration of atmospheric carbon dioxide data into a
globally consistent measurement record. Journal
of Geophysical Research: Atmostphere 100(D6): 11593-11610.
Myhre, G., Shindell, D.,
Bréon, F-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J-F.,
Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemuara, T.
& Zhang, H. 2013. Anthropogenic and natural radiative forcing. In Climate
Change 2013: The Physical Science Basis. Contribution of Working Group I to the
Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by Stocker, T.F., Qin, D., Plattner, G-K., Tignor, M., Allen, S.K.,
Doschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P.M. Cambridge
University Press. pp. 659-740. doi: 10.1017/CBO9781107415324.018
Olivier, J., Schure, K.
& Peters, J.J. 2017. Trens in Global
CO2 and Total Greenhouse Gas Emissions: Summary of the 2017 Report.
The Hague: PBL Netherlands Environmental Assessment Agency
Rangga, J.U., Ismail,
S.N.S., Rasdi, I. & Karuppiah, K. 2023. Contribution of waste segregation
to ghg emissions, land usage, and health risk of NMVOC exposure: A study in
Malaysia. Journal of Material Cycles and
Waste Management 25: 181-197.
Razali, A.M. & Yeow, P.M. 2014. Pemetaan kepekatan metana di Semenanjung Malaysia. Journal of Quality Measurement and Analysis 10(2): 99-110.
Rendana, M., Idris, W.M.R.
& Rahim, S.A. 2021. Atmospheric Methane condition over the south Sumatera
peatland during the COVID-19 pandemic.
Aerosol and Air Quality Research 21: 210072.
Saunois, M., Bousquet, P.,
Poulter, B., Peregon, A., Ciais, P., Canadell, J.G., Dlugokencky, E.J., Etiope,
G., Bastviken, D., Houweling, S., Janssens-Maenhout, G., Tubiello, F.N.,
Castaldi, S., Jackson, R.B., Alexe, M., Arora, V.K., Beerling, D.J.,
Bergamaschi, P., Blake, D.R., Brailsford, G., Brovkin, V., Bruhwiler, L.,
Crevoisier, C., Crill, P., Covey, K., Curry, C., Frankenberg, C., Gedney, N.,
Höglund-Isaksson, L., Ishizawa, M., Ito, A., Joos, F., Kim, H.S., Kleinen, T.,
Krummel, P., Lamarque, J.F., Langenfelds, R., Locatelli, R., Machida, T.,
Maksyutov, S., Mcdonald, K.C., Marshall, J., Melton, J.R., Morino, I., Naik,
V., O'doherty, S., Parmentier, F.J.W., Patra, P.K., Peng, C., Peng, S., Peters,
G.P., Pison, I., Prigent, C., Prinn, R., Ramonet, M., Riley, W.J., Saito, M.,
Santini, M., Schroeder, R., Simpson, I.J., Spahni, R., Steele, P., Takizawa,
A., Thornton, B.F., Tian, H., Tohjima, Y., Viovy, N., Voulgarakis, A., Van Weele,
M., Van Der Werf, G.R., Weiss, R., Wiedinmyer, C., Wilton, D.J., Wiltshire, A.,
Worthy, D., Wunch, D., Xu, X., Yoshida, Y., Zhang, B., Zhang, Z. & Zhu, Q.
2016. The global methane budget 2000-2012. Earth
Syst. Sci. Data 8(2): 697-751.
Shivanna, K.R. 2022. Climate
change and its impact on biodiversity and human welfare. Proceedings of the Indian National Science Academy 88(2): 160-171.
Sumathi, S., Chai, S.P.
& Mohamed, A.R. 2008. Utilization of oil palm as a source of renewable
energy in Malaysia. Renewable and
Sustainable Energy Reviews 12(9): 2404-2421.
Tang, W., Xu, Y.J., Ma, Y.,
Maher, D.T. & Li, S. 2021. Hot spot of CH4 production and
diffusive flux in rivers with high urbanization. Water Research 204(1): 117624.
Wu, T.Y., Mohammad, A.W.,
Jahim, J.M. & Anuar, N. 2010. Pollution control technologies for the
treatment of palm oil mill effluent (POME) through end-of-pipe processes. Journal of Environmental Management 91(7): 1467-1490.
*Pengarang untuk surat-menyurat; email:
talib@ukm.edu.my
|